


Support for learning with multiple representations 
 



 

Doctoral committee 
 
Chair: Prof. dr. H.W.A.M. Coonen, Universiteit Twente 
Promotor: Prof. dr. A.J.M. de Jong, Universiteit Twente 
 
Members: Prof. dr. H.P.A. Boshuizen, Open Universiteit Nederland 
 Prof. dr. P.A. Kirschner, Universiteit van Utrecht 
 Dr. S.E. Ainsworth, University of Nottingham 
 Prof. dr. J.M. Pieters, Universiteit Twente 
 Prof. dr. R. de Hoog, Universiteit Twente 
 Dr. W.R. van Joolingen, Universiteit Twente 
 
 
 
 
 
 
 
 
This research is carried out in the context of the Van der Leeuw chair of  
prof. dr. A.J.M. de Jong and is supported by NWO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN: 978-90-365-2603-6 
©2007, Jan van der Meij, Enschede 
 
Cover by: Gerrit van der Meij 
Print: PrintPartners Ipskamp, Enschede 
 
All rights reserved. 



 

 
 
 

SUPPORT FOR LEARNING WITH MULTIPLE REPRESENTATIONS 
DESIGNING SIMULATION-BASED LEARNING ENVIRONMENTS 

 
 
 
 
 
 
 
 

PROEFSCHRIFT 
 
 
 
 
 
 
 

ter verkrijging van 
de graad van doctor aan de Universiteit Twente, 

op gezag van de rector magnificus, 
prof. dr. W.H.M. Zijm, 

volgens het besluit van het College voor Promoties 
in het openbaar te verdedigen 

op donderdag 20 december om 13.15 uur 
 
 
 

door 
 
 
 

Jan van der Meij 
geboren op 29 mei 1970 

te Tzum 
 



 

Dit proefschrift is goedgekeurd door de promotor: 
Prof. dr. A.J.M. de Jong 
 



 

Preface 
 
In November 2000, at the European Academic Software Award finals, I asked both 
Ton de Jong and Wouter van Joolingen if they had a PhD student position for me. I 
had worked for CINOP in ‘s-Hertogenbosch for four years at that time and was 
looking for a new challenge. Ton had just earned his professorship which came with 
some money to employ a PhD student and he offered me a job. Wouter, working at 
the University of Amsterdam, also had a PhD position available. 
 
Over that Christmas, Elly and I had a lot to think about. Taking one of the jobs 
meant moving to either Amsterdam or Enschede, selling our house in  
‘s-Hertogenbosch.  This also meant a job change for Elly. 
 
After Christmas I called Ton and said yes. We agreed that I would get a contract for 
five years to work four days a week on my PhD-project and one day a week on 
other projects and lectures. I started on the first of March 2001. Since Elly was 
pregnant we decided not to move until she gave birth to our beautiful daughter 
Emma, in May 2001. Ton kindly offered a three day work week in Enschede and 
two days at home. Every Monday night I stayed on campus. Those first months, 
studying, working and even sleeping on campus made me feel like a student again. 
Which of course I was! Moving to Glanerbrug in November however felt like 
coming home. I had always loved Twente and now I was living there again.  
 
In December 2001 I was asked to join the OPUT for one day a week. Jules Pieters, 
who was our dean by that time, agreed that my contract could be extended for a year 
and I said yes. I now had three days a week left to work on my PhD project. I 
participated in the OPUT until the first of August 2006. This was the day that I got a 
job as Assistant Professor in our instructional technology department for which I am 
very grateful. The new job meant giving more lectures and postponing the 
promotion date from March to December 2007.  
 
Working 6 and a half years on a PhD-project seems a long time. However, I did not 
feel like that at all. Of course, a lot of things happened during the past years. I 
became 6 and a half years older, learned to do research and bought two new 
motorbikes. Elly also became 6 and a half years older, found a great job in Holten 
and bought a big Italian car. Emma is over six years old now and is learning to read, 
write and swim.  
 
This thesis is the result of the research I carried out in the past years. Although my 
name is on the cover and I am the one who is going to defend it, I did not do all the 
work alone. There are a lot of people who have contributed to this thesis. 
 
First of all I would like to thank my promotor and supervisor Ton de Jong for his 
trust in me and his support during my PhD trajectory. Although we did not always 
agree on the route to follow, we always came to an accord. Ton, you taught me a lot. 



 

Even though Hans van der Meij was not my supervisor, I could always ask him for 
help on the various ‘problems’ I encountered. He helped me to look critically at my 
own work and to focus on the main points. He is a colleague and friend who always 
reminds me to not only see my weak points but to trust in the things I am good at. 
Hans, thank your for that. I would also like to thank Jos Boeije for his work on the 
SimQuest simulations. Jos, without your help I would still be struggling to get the 
simulation models running. During the analyses of my first study Hannie Gijlers and 
Ard Lazonder helped me with statistical analyses. It had been while since I used 
statistical tests and Hannie and Ard had to help me with even the simplest things. 
Thank you both for explaining them to me with much patience. The experiments 
could not have been done without a working version of SimQuest. Wouter van 
Joolingen, Paul Weustink and, during the first three years, Koen Veermans were 
always there to do some just in time fixes and implementations. Thanks to you guys, 
SimQuest ran smoothly in every school for all three experiments. Although Sarah 
Manlove and Emily Fox say my English writing is excellent, they did a great job in 
making my texts better. Thank you both. 
 
Speaking of the schools: The experiments could not have been carried out without 
them. I would like to thank all teachers and students from ROC Utrecht, ROC A12 
Ede, ROC Nijmegen, ROC van Twente locatie Hengelo, ROC van Twente locatie 
Almelo, Bonhoeffer College Enschede and De Waerdenborch Holten for their 
participation. 
 
Doing PhD research is often associated with working in solitude. Luckily, thanks to 
my fellow PhD students and colleagues, I didn’t feel isolated at all. I feel very 
comfortable in our department and have (had) many interesting discussions about 
my and their work together with lots of ‘off topic’ and personal talks. 
 
Although I always call my father if I need advice, I am glad that I do not always 
take it. If I had done so, I would now be a mechanical engineer in some factory in 
Friesland, which of course might have been a great job. Despite the fact that my 
father asked me ‘Isn’t it time for you to find a job now?’ after I finished middle 
vocational training and teacher training, he was always proud that I didn’t listen.  
Both my parents have always supported my choices. I am very grateful for that.  
 
Finally, I thank Elly and Emma for always being there and standing by me in every 
way they can. I love you. 
 
 
Jan van der Meij 
November 2007 
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Introduction 
 
Many learning materials offer multiple representations. Textbooks, for example, use 
photographic images to illustrate and explain parts of the text. In early computer-
based learning environments texts and images were provided in the same way as in 
textbooks, namely as static images. Therefore, research on representations in 
textbooks was also valid for these early computer-based learning environments. In 
modern, computer-based learning environments many additional representation 
types are available, including: audio, video, animations and dynamically changing 
graphs and tables. This offers new challenges and opportunities and calls for a new 
line of research to study the implications for learning when using these multiple 
dynamic representations. This thesis bundles three studies on supporting learning 
with multiple representations in simulation-based learning environments. 

Representations 

When learners study the behaviour of a phenomenon present in the real world they 
rarely use the real system. A representation1 of the real system is often used when 
studying the domain. A representation of a real system describes the system, but is 
not the system itself. According to Palmer (1978), a representation is something that 
stands for something else. It is some sort of model of the thing (or things) it 
represents. Palmer proposes any particular representation should be described in 
terms of: (1) the represented world, (2) the representing world, (3) what aspects of 
the represented world are being represented, (4) what aspects of the representing 
world are doing the modelling and (5) the correspondence between the two worlds. 
A world, X, is a representation of another world, Y, if at least some of the relations 
among objects of X are preserved by relations among corresponding objects of Y. 
Other authors agree with this description of representations. For example, Bechtel 
(1998), in an article on dynamical systems theory, writes that the function of a 
representation is to stand in for something else. He also points out that the format of 
the representation is very important and that it has to be coordinated with the 
process in which it is used. 

 
1 In this thesis we focus on external representations as opposed to internal ones. External representations 
are depictions or descriptions existing outside the learner. Internal representations refer to the learner’s 
stored cognitive structures (Shavelson, 1974). When we use the term representations, we refer to external 
ones. 
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There are several reasons for using representations instead of real systems in 
learning environments. In some cases the system itself is not available or not 
suitable for teaching. In other cases (the representation of) the real system has to be 
enhanced, for instance by representations of forces, before it can be used for 
learning or embedded in other relevant learning material. 

Representations in simulation-based learning environments 

In our research we focus on learning with multiple representations in simulation-
based learning environments. Before describing the benefits and challenges of using 
multiple representations, we focus on the use of representations in simulation-based 
learning environments. Simulation-based learning environments offer learners the 
opportunity to perform experiments in controlled settings. They are safe to work 
with, may increase the availability of inaccessible or expensive systems, use 
minimal resources, are modifiable and may allow for experimentation with systems 
that normally cannot be physically manipulated. Moreover, simulations offer new 
instructional opportunities. For example, simulations visualize processes that are 
invisible in natural systems by, for instance, showing animations of speed vectors or 
graphs of quantities such as energy or impulse. In this way, multiple views and 
multiple representations of the simulated system can be offered. 
 The representations in simulation-based learning environments are often 
dynamic. This means the information they hold changes based on manipulations in 
the learning environment. Simulation-based learning environments contain an 
executable model of a (natural) system. They simulate the behaviour of the 
modelled system. Learners explore the simulation model by manipulating values of 
(input) variables and observing the behaviour of other (output) variables. By 
understanding the relations between the variables, it is expected that learners acquire 
a deeper understanding of the domain and are able to transfer this knowledge to 
similar ‘problems’ in other (real) situations. 
 In simulation-based learning environments the real system is described by a 
simulation model. The simulation model is an abstract representation of the real 
system that describes its behaviour. In many situations this simulation model is too 
complex to let novice learners learn the simulated domain. Moreover, the simulation 
model only shows the mathematical relations between the variables. This is seldom 
sufficient for learning a (new) domain. This is the reason that the simulation model 
is not visible for the learner in most simulation-based learning environments. The 
learner interacts with the model through additional representations such as 
animations, numerical outputs, graphs and tables. As a result, in simulation based 
learning environments the real system is represented by a model which is itself also 
represented (see Figure 1-1).  
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Figure 1-1  Representations of learning environments 

Multiple representations 

We speak of multiple representations when two or more representations are used to 
represent real systems or processes. These representations can represent different 
aspects of the real system or can represent the same aspects in different ways. 
According to Palmer (1978), combining two or more representations of the 
represented world can model the same set of objects in three ways. First, 
representations are non-equivalent if each representation models different relations 
among the represented objects. Second, representations are informationally 
equivalent if they model the same relations in different ways. Third, if 
representations model the same relations in the same way they are completely 
equivalent. Despite this, they may appear different because of the context they are 
used in and/or operations performed on them. According to Palmer it is important 
that the learner always realise a representation is not the real system. Information 
discovered in the representation should always be translated (back) to the real 
system. 
 
An illustration of a simulation-based learning environment using multiple 
representations is shown in Figure 1-2. The figure shows the interface of a 
simulation concerning the braking distance of a scooter with different initial speeds, 
different braking power, different masses and different road conditions. 
 The different representations in this simulation-based learning environment 
present different aspects of the subject matter. Numerical fields are used for both 
setting the initial speed and braking power and to observe mass, current speed, and 
distance. A graph is used for representing the actual (real time) speed against time. 
Animations are used to represent the scooter and for showing the current speed 
(speedometer). Beneath the animation of the scooter riding in the landscape a slider 
represents the braking distance of the scooter. These aspects concern the “view” of 
the simulation model which is the focus of the studies in this thesis. Additional 
representations are available for operating the simulation. Learners can scroll the 
graph and store or erase the current run with action buttons under the graph. Action 
buttons are also used to start, stop, and reset the simulation. They are located in the 

Real system 

Representation 

Simulation model 

Representation 

Real system 

Learning environment Simulation-based learning environment 
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left bottom corner of the window. Radio buttons are used for setting the road 
condition and the mass of the scooter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-2  Interface showing scooter braking distance 

 
In this learning environment the representations are partially informationally 
equivalent. For example, the magnitude of the initial speed is shown in an input 
field, in the graph, and in the animation of the speedometer. The initial speed is also 
visible in the animation of the scooter, but the magnitude cannot be read off this 
representation. 
 
Presenting two representations is not automatically better than one (Petre, 
Blackwell, & Green, 1998). These authors point out that a single representation uses 
less screen space, avoids problems of switching from one representation to the other 
and of finding the right place in each one and avoids the problem of working out 
which parts of the representations are equivalent. So, the question is: Why use 
multiple representations? 

Reasons for using multiple representations 

The basic idea of using multiple representations is that learners can benefit from the 
properties of each representation. If learners are capable of mentally integrating the 
information from several representations they have a more complete picture of the 
represented domain compared with learning the domain with only one 



Introduction 

5 

representation. It is expected that this will lead to a deeper understanding of the 
subject being taught (Ainsworth, Bibby, & Wood, 1997; de Jong et al., 1998; 
Seufert, 2003; van Labeke & Ainsworth, 2001). We believe acquiring deeper 
knowledge is the main reason for using multiple representations. Learning with 
more than one representation is assumed to encourage learners to reason with and 
reflect on the similarities and differences between the representations in order to 
gain better understanding of the domain. We believe this so-called translation 
between representations is the most important process in learning with multiple 
representations. According to Petre, Blackwell and Green (1998), translation 
between multiple representations forces reflection beyond the boundaries and details 
of the separate representations. In her multiple representations framework, 
Ainsworth (2006) also identifies the construction of deeper knowledge as one of its 
main functions. She argues that multiple representations support deeper knowledge 
construction that leads to a more abstract and extended understanding of the 
domain. Other key functions according to both Ainsworth and Petre et al. are the so-
called complementary and redundancy function and the constraining function. We 
argue that these two functions are supportive of the main function: constructing 
deeper knowledge. In addition, the forms of the representations are equally as 
important as their functions in multi-representational learning environments. One 
cannot consider the function of a representation without referring to its form. 
 
In the remainder of this section we describe the three main functions of multiple 
representations in more detail with reference to the functional taxonomy of 
Ainsworth (1999), to the reasons for using multiple representations according to 
Petre et al. (1998) and to Palmers’ (1978) classification of multiple representations. 
In addition, we clarify each of the functions by giving examples of how they can be 
integrated in a specific type of multi-representational learning environment: 
computer simulations. 
 
Construct deeper knowledge 
As indicated above, we consider constructing deeper knowledge to be the main 
reason for using multiple representations. According to Ainsworth (2006) multiple 
representations support the construction of deeper knowledge when learners 
integrate information from several representations to achieve insight that would be 
difficult to achieve with one representation. Citing Bransford and Schwartz (1999), 
she writes that insight derived in this way increases the likelihood of transferring 
this knowledge to new situations. Petre et al. (1998) use the term “useful 
awkwardness” for the process of integrating information from different 
representations in order to acquire deeper understanding of the domain. They 
believe the use of multiple representations forces learners to reflect beyond the 
boundaries and details of a first representation to anticipate correspondences in a 
second one. While Petre et al. do not elaborate on deeper knowledge construction, 
Ainsworth does. She distinguishes three sub-functions that lay the foundations for 
deeper knowledge construction: abstraction, extension and relation. 
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Abstraction 
It is expected that when learners build references across multiple representations 
they acquire knowledge about the underlying, more abstract, structure of the domain 
represented. When learners have a more abstract understanding of the domain, it is 
believed that they can use this understanding in new situations. If learners studied 
the simulation of the hoisting crane shown in Figure 1-3 without the graphs 
represented simultaneously with the other representations, it could well be the case 
that they would not notice the linear relation between the length and torque and 
between the force and torque. It is assumed that learners study the correspondences 
(and differences) between the representations when multiple representations are 
presented simultaneously and thereby get a more abstract understanding of the 
domain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-3  Interface of simulation on torque 

 
Extension 
It is expected that, by using multiple representations, subjects can transfer their 
knowledge of the domain presented in the learning environment to other, 
comparable, situations (e.g., Ainsworth, 1999; Petre et al., 1998). By using multiple 
representations it should be easier to apply knowledge to new situations because 
learners acquired their knowledge at a more abstract level (see the section on 
Abstraction, page 6). When learners have studied the behaviour of torque on a 
hoisting crane with the simulation shown in Figure 1-3, it is expected that they are 
then able to apply their knowledge to the simulation shown in Figure 1-4. In this 
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simulation learners study the behaviour of torque on a nut when operating an open-
end spanner. Learners can change the position of the hand (length), and can change 
the value and direction of the force. However, extension can also lead to 
misconceptions, as when learners use the operators appropriate for reading a table 
for reading the information of a graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-4  Interface showing torque on nut 

 
Relation 
Ainsworth (2006) describes relation as the association of two representations 
without reorganisation of knowledge. She considers relating representations to be 
one of the processes that lead to the construction of deeper knowledge. In her 
framework, Ainsworth does not make clear whether she considers relating 
representations to include reasoning about the relations or to involve only finding 
the relations between representations at a surface level. If she defines relation as the 
former, we do agree this can lead to deeper understanding; however, we would not 
call this relating. We would call it translating between representations (see the 
section on Translating between representations, page 19). If she defines relation as 
finding similarities and differences in two or more representations on a surface 
level, as we do (see the section on Processing multiple representations, page 17), we 
do not agree with her that this leads to deeper understanding. In learning with 
multiple representations, relating representations is very important, but relating 
alone is not enough. A learner has to reason about the relations in order to construct 
deeper knowledge. That is why we do agree with Ainsworth when she also writes 
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that relating may serve as the basis for abstraction. In the section on Processing 
multiple representations on page 17, we describe the process of relating 
representations in more detail when we describe the four tasks learners have to 
perform to be able to learn from multiple representations. 
 
Complementary and redundancy function 
When using multiple representations, each representation can show specific aspects 
of the learning material or can show the same aspects of a domain in different forms 
(e.g., an animation showing, technically, the same information as a graph). 
Ainsworth (1999) uses the term ‘complementary functions’ for describing both 
complementary and redundant functions of multiple representations. Since 
‘complementary functions’ does not cover both, usually combined, functions, we 
speak of ‘complementary and redundancy function’. Even when representations 
complement each other, in most multi-representational learning environments there 
is considerable information overlap between the representations. In fact, redundancy 
is essential to be able to relate different representations. Because Palmer (1978) only 
focuses on the information a representation contains, in his view the complementary 
and redundancy function is the essential function of multiple representations. 
 By combining representations that contain different information or support 
different processes (Ainsworth, 2006), it is assumed learners can benefit from the 
advantages of each of the representations (Tabachneck-Schijf, Leonardo, & Simon, 
1997).  In their discussion of reasons to use multiple representations, Petre et al. 
(1998) mention only support for different information. They speak of both ‘multiple 
identical representations’ and so-called ‘heterogeneous inference’ which they 
borrowed from Stenning and Oberlander (1995). With ‘multiple identical 
representations’ they mean that different representations can provide different views 
on the same objects. Architects, for example, can provide multiple simplified 2 
dimensional views of three dimensional objects. With ‘heterogeneous inference’ 
they mean that the learner has to integrate two or more representations in order to 
encompass the whole of the problem. 
 Different types of representations may be useful for different purposes, as they 
differ in their representational and computational efficiency (Larkin & Simon, 
1987). Text and pictures, for example, are good representations for presenting the 
context of a problem. Diagrams are well suited for presenting qualitative 
information. They can hold information that supports computational processes by 
indexing of information (Larkin & Simon, 1987). Graphs, formulas and numeric 
representations can be used to show quantitative information. Graphs, in particular, 
are important tools in enabling learners to predict relationships between variables 
and to show the nature of these relationships (McKenzie & Padilla, 1984). Graphs 
show trends and interaction more successfully than alphanumeric representations. 
An example is the distinction between an equation such as ‘y=x2+2x+5’ and an 
informationally equivalent graph. The equation does not explicitly show the 
variation, which the graph does. According to Cox and Brna (1995) the cognitive 
effect of graphical representations is the reduction of search and working memory 
load by organising information by location. For example, tables make information 
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explicit and can direct attention to unsolved parts of a problem (e.g., empty cells of 
a tabular representation). 
 Ainsworth (1999) distinguishes between different information and different 
processes. We illustrate these with examples from simulation-based learning 
environments. 
 
Different information 
There are many reasons for using multiple representations showing both 
complementary and redundant information. In this section we give the following 
examples: 
 
1. When one representation is insufficient to show all domain aspects. 
2. When one representation becomes too complex to show all the information. 
3. To show the domain from different perspectives. 
4. To vary domain precision or complexity.  
 
When one representation is insufficient to show all domain aspects. Many domains 
have different aspects that are each best shown through a specific type of 
representation. By only showing a graph of a process, for example, the process itself 
is not shown. If it is important to show the process, a second representation can be 
used. An example is presented in Figure 1-5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-5  Interface of simulation on collisions  
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The animation shows the position of the balls, their initial speed and end speed, and 
their masses (as numbers inside the balls). The animation gives a ‘real life’ 
representation of the domain, but cannot show all important aspects of the domain. 
An important aspect of the domain collisions is to understand the relation between 
mass and initial speed in the collision. The animation can give an idea of this 
relation, but the exact relation cannot be read off the animation. A graph is an 
appropriate representation to read off relations, but it cannot show the real life 
situation. While the single representation cannot show all aspects of the domain, the 
combination of both can. 
 
When one representation becomes too complex. To learn a domain containing many 
variables, the domain information can be distributed over several representations. 
This results in representations that are easier to process. 
 The sewage plant (Figure 1-6) is a complex system in which different processes 
are involved. In order to understand the system, the learning environment first 
provides an overview of the complete system and then zooms in on the separate 
parts. Figure 1-7 shows an example of one of the parts. With this representation 
learners can study the behaviour of a sandtrap. 
 
When the behaviour of several variables in a complex process is presented by 
graphs, using multiple graphs showing the behaviour of different variables is often 
preferable over using a single graph showing all variables. With multiple graphs the 
learner can easily study the behaviour of one variable. A drawback is that it is 
harder to compare two variables that are presented in different graphs, even when 
these graphs are presented simultaneously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-6  Interface showing overview of sewage plant 



Introduction 

11 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-7  Interface showing sedimentation of sand grain in a sandtrap 

 
Showing the domain from different perspectives. Multiple representations can show 
a domain from different perspectives. Showing a domain from different perspectives 
can mean showing it from different angles or showing different functionalities of a 
domain. Figure 1-8 shows a lathe from different angles.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-8  Interface showing lathe from different perspectives 
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By doing this, the learner is expected to have a better idea of how the machine 
works. The left representations show the complete machine from the side and from 
above, and the right representations zoom in on the important part of the machine. 
An example of showing different functionalities would be showing the engine of a 
car from a mechanical and electrical perspective. In simulation-based learning 
environments, the simulation model needs to be suitable for modelling different 
perspectives of the domain (see White & Frederiksen, 1990). 
 
Varying the precision or complexity of the domain. When a learner explores a new 
domain it can be useful to present the domain first in a qualitative way before 
introducing the values of the variables involved. Examples are shown in Figure 1-9. 
The interfaces presented belong to a simulation where the learner first explores the 
simulation by doing several assignments that encourage the learner to explore the 
simulation in a qualitative way. In a second stage the values of the variables are 
introduced and the learner can then explore the relation between the variables in a 
quantitative way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-9  Interface showing qualitative (left) and quantitative (right) variables 

 
In this example the representations are shown in sequence. Another example would 
be to present an animation showing the domain qualitatively alongside an equation 
showing the same domain quantitatively. 
 Domain precision can also mean the domain is sequenced from simple to 
complex to support learners in learning the domain gradually. In this case different 
representations are used to support so-called model progression (White & 
Frederiksen, 1990). One type of model progression is increasing the model 
complexity step-by-step. In this case a first representation only shows some 
variables, whereas successive representations show more variables. 
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Different processes 
Ainsworth (1999) subdivides support for different processes into three categories: 
 
1. Strategies 
2. Individual differences 
3. Tasks 
 
Strategies. Using multiple representations can encourage learners to use more than 
one strategy to solve a problem (Ainsworth, 2006). An example is shown in Figure 
1-10. To find the phase shift in a given electrical circuit learners may switch 
between the graph and the vector diagram to find the right answer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-10  Learners are able to switch their strategy by using a different 
representation 

 
Individual differences. Different learners may have different preferences for 
representations. For one learner a formula may be the preferred representation for 
understanding the domain, while for another it is an informationally equivalent 
graph (see Figure 1-11 for an example). Providing multiple representations allows 
learners to explore the domain using the representation(s) of their choice. However, 
preference for specific types of representations has to be handled with care. 
Schuyten and Dekeyer (2007) found that learners with preference for textual 
information had lower performance in statistics. Moreover, preferences for specific 
representations might lead to the processing of only one of the provided 
representations (see e.g., Tabachneck-Schijf & Simon, 1998). 
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Figure 1-11  Interface showing both a formula and a graph 

 
Multiple tasks. In many learning environments learners have to perform a number of 
different tasks to achieve a particular goal. The goal in simulation-based learning 
environments often is that learners learn to understand the underlying model by 
exploration. Frequently, the underlying model is explored by performing different 
tasks on multiple representations representing some aspects of the simulation model. 
One representation is typically not sufficient to support the different tasks the 
learners have to perform. Particular representations facilitate performance on certain 
tasks.  
 When the task for the learner using the interface shown in Figure 1-12 is to 
position the people on the seesaw at the same distance from the fulcrum, it’s easier 
to do that with the animation than with the numerical representation. When the task 
is to find out the value of the moment in a given situation, this cannot be done by 
using the animation. In this case learners need the numerical representation to find 
the answer. 
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Figure 1-12  Interface of simulation on balance 

 
Constrain interpretation 
By the constraining function of multiple representations, a first representation can 
be used to constrain the information presented in a second. Petre et al. (1998) use 
the term ‘bridging representations’ when a second representation helps the learner to 
reason about a first. In her functional taxonomy Ainsworth (1999) distinguishes 
between constraining by familiarity and constraining by inherent properties. 
 
Constrain by familiarity 
An example of constraining by familiarity is an animation constraining the 
interpretation of a graph. There is a strong tendency among learners to view graphs 
as pictures rather than as symbolic representations (Kaput, 1989; Mokros & Tinker, 
1987). When the animation shows a car riding up a hill with constant power, it 
constrains the interpretation of the speed shown in a line graph. The animation can 
show learners the line graph is representing not a valley but the speed of the car; 
they can see that the car slows down going up the hill and it accelerates going down 
the hill. The purpose of the constraining representation is not to provide new 
information but to support the learners’ reasoning about the less familiar 
representation (Ainsworth, 1999). 
 Figure 1-13 shows an example of an animation of a car constraining the 
interpretation of the graphs above it. The animation helps the learner to understand 
the behaviour of the variables presented by the graphs. 
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Figure 1-13  Interface showing accelerating car 

 
Constrain by inherent properties 
Sometimes a more abstract or unfamiliar representation can be used to constrain 
interpretation of a second representation. Ainsworth (2006) uses an example from 
Stenning and Oberlander (1995) which shows that graphical representations are 
generally more specific than textual ones: “The phrase ‘the cat is by the dog’, is 
ambiguous about which side of the dog the cat is sitting, but in a picture, the cat 
must be either on the left or the right of the dog. So, when these two representations 
are presented together, interpretation of the first (ambiguous) representation may be 
constrained by the second (specific) representation.” (p. 189). 
 In Figure 1-14 the text on the right is describing the context of the situation: “A 
hoisting crane is carrying a load”. This description does not make clear what the 
horizontal and vertical position of the load is. The animation in the left window 
constrains the interpretation of the text by showing these positions. It makes clear 
that the load is located at the right side, at a fourth of the maximum length from the 
jib fixation, and that it hangs at a fourth of the maximum height. 
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Figure 1-14  Interface showing the context described by the text on the right 

Processing multiple representations 

According to Ainsworth, Bibby and Wood (1997), learners are faced with three 
tasks when learning with multiple representations. They have to: (1) learn to 
understand each representation, (2) understand the relation between the 
representation and the domain it is representing and (3) must come to understand 
how representations relate to each other. We adapted this to four tasks, since we 
believe that in order to understand the relations learners have to perform two 
separate tasks: relating representations and translating between them. Therefore, we 
distinguish four tasks for learning with multiple representations. In our view, 
learners have to: (1) understand the syntax of each representation, (2) understand 
which parts of the domain are represented, (3) relate the representations to each 
other if the representations are (partially) redundant and (4) translate between the 
representations. 
 
Understanding the syntax 
In order to understand the syntax of a representation, learners must learn the format 
and operators of the representation. Moreover, operations on a representation must 
be coordinated with the format of the representation. So, the learner must 
understand which operations to carry out on particular representations. The format 
of a graph, for example, would include attributes such as labels, number of axes, and 
line shapes. Examples of graph operators are finding the gradients of lines, minima 



Chapter 1 

18 

and maxima, and intercepts. Meaningful operators depend on the type of 
representation. Operators for tables, for example, differ from operators for graphs. 
When learners are unfamiliar with the representations used in a learning 
environment, the operators for one representation are often used inappropriately to 
interpret a different representation. This results in common mistakes such as 
viewing a graph as a picture (see Mokros & Tinker, 1987). In the already mentioned 
example of a car riding up a hill with constant power, novice learners could easily 
misinterpret the slope of the graph as the representation of a car riding down a hill. 
 
Understanding which parts of the domain are represented 
To learn from a representation, learners have to understand which parts of the 
domain are being represented. This could be either a complete domain with all its 
variables and relations or only a specific part of the domain. To do this, learners 
must have sufficient knowledge of the domain. When learners do not have this 
knowledge, the learning environment must provide at least the information learners 
need to be able to ‘read’ the representation. For many domains it is important that 
learners at least know which variables play a role. If the learner does not have this 
knowledge yet, the variables have to be introduced explicitly or learners should be 
able to look them up in a help system, for example. Relations between domain 
variables can be either presented to the learner or explored by the learner.  
 
Relating representations 
We define relating as finding similarities and differences of different representations 
at a surface level. In a simulation about a car in motion, for example, the learner has 
to relate the slope of the line in a speed-time graph to the right property of the 
moving car. A relevant question would be: Does the line represent the acceleration 
of the car or does it represent the speed of the car?  
 When different representations are presented together, it is not always clear 
whether learners are supposed to relate them to each other. This depends on the 
functions the provided representations have in the learning environment (see the 
section on Reasons for using multiple representations, page 4). When 
representations complement each other, for example, representation elements are not 
supposed to be mapped into each other. In this case learners have to combine the 
elements presented in the representations to get the ‘full picture’. 
 Especially for novice learners, not familiar with the domain characteristics, it is 
hard to identify if the elements shown in the representations have to be linked or 
not. In a learning environment where learners were supposed to relate 
representations, Tabachneck-Schijf and Simon (1998) found that rather than relating 
representations, novice students tended to reason with only one representation at a 
time. 
 Even if learners know which elements to relate, problems may arise. One of 
these problems is the split-attention problem as studied by Chandler and Sweller 
(1991) and Mayer and Moreno (1998). When learning with separate representations, 
learners are required to relate disparate sources of information, which may generate 
a heavy cognitive load that may leave fewer resources for actual learning (Sweller, 
1988, 1989). This, however, is not always problematic, since one of the benefits of 
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using multiple representations is that learners – once they manage to relate the 
representations in the right way – are believed to gain a better understanding of the 
domain by studying the relations between the representations.  
 
Translating between representations 
We define translating as having to interpret the similarities and differences of 
corresponding features of two or more representations. Translating between 
representations is expected to lead to knowledge about the underlying, more 
abstract, structure of the domain represented. 
 A number of studies have reported difficulties novices have in translating 
between representations. Tabachneck, Leonardo, and Simon (1994) reported that 
novices learning with multiple representations in economics did not attempt to 
translate information between line graphs and written information. Experts, in 
contrast, tied graphical and verbal representations closely together. Similar results 
were reported by Kozma (2003), who reviewed experimental and naturalistic studies 
examining the role of multiple representations in understanding science. He looked 
at the differences between expert chemists and chemistry students in their 
representational skills and in their use of representations in science laboratories. 
Experts coordinated features within and across multiple representations to reason 
about their research. Students, on the other hand, had difficulty moving across or 
connecting multiple representations, so their understanding and discourse were 
constrained by the surface features of individual representations. 

Supporting learning with multiple representations 

Learning with multiple representations can be supported in several ways. This 
section reviews literature suggesting different kinds of support for different 
purposes and proposes a categorization of support types. 
 According to Ainsworth (1999) the type of support depends on representation 
use. She suggests that when multiple representations are used to support 
complementary roles and information, the learning environment should 
automatically perform translation between the representations if translation is 
necessary for learning the domain. This frees the learner from this task, which might 
tax working memory. Alternatively, it may be appropriate to present the 
representations sequentially to discourage attempts at coordination if translation 
between the representations is not necessary to learn the domain (e.g., when specific 
aspects of a domain can be learned separately from others). When multiple 
representations are used to constrain interpretation, the relations between 
representations should be made very explicit. This could be achieved by either 
automatic translation or dynamic linking. If neither representation is used for these 
actions, the relations between the representations should be made explicit by visual 
cues, such as highlighting correspondent components. If learners are required to link 
the representations themselves, representations that are easily coordinated should be 
selected. These are representations with more or less the same representational 
codes (Ainsworth, Wood, & Bibby, 1998). 
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Kozma (2003) suggests three design principles that could increase the drawing of 
connections between representations and which support learners’ domain 
understanding: (1) provide at least one representational system that has features that 
explicitly correspond to the entities and processes that underlie the physical 
phenomena being taught, (2) have learners use multiple, linked representations in 
the context of collaborative, authentic, laboratory experiments, (3) engage learners 
in collaborative activities in which they generate representations and coordinate the 
features of representations to confirm and explain the findings of their 
investigations. They implemented these design principles in one of their early 
learning environments called 4M:Chem. 4M:Chem uses four different but linked 
symbolic spaces to represent chemical phenomena that learners must investigate. 
These consist of a chemical equation, a dynamic real-time graph, a molecular 
animation, and a video of a web lab experiment. Colour and dynamic linking were 
used to link the representations.  
 In a pilot study Kozma (2000) looked at the material and social affordances of 
the environment. Students worked in pairs on simulated experiments and were 
guided by a manual which asked them to make predictions, record observations, 
give explanations, and draw conclusions. If students disagreed, they were instructed 
to try and convince each other of their position, using whatever evidence was 
available. The pilot study showed how a pair of students constructed shared 
meaning from observed surface features across multiple representations. They both 
achieved a scientific understanding of the entities and processes that underlie a 
scientific phenomenon and they replicated the discourse practices of scientists. 
 Kozma and Russell (1997) asserted that instruction can foster the development 
of “representational competence” through explicitly engaging students in the 
production of various representations and encouraging them to reflect on their 
meanings. They defined representational competence as a set of representational 
skills concerning the ability to represent a domain (in their case: chemistry) in 
multiple ways. 
 Ardac and Akaygun (2004) also performed research in the domain of chemistry. 
In their study students had to integrate three representations into one consistent 
representation. These authors believe that when learners are expected to learn from 
visual displays, instruction should include opportunities for learners to generate 
their own representations and check for the consistency between these 
representations. Adding such a reflective component would also provide valuable 
information for teachers about how learners interpret, relate, and integrate 
representations depicting the macroscopic, molecular, and symbolic levels of 
chemical phenomena. Further instructional support may be required to highlight the 
correspondence between related representations. Explanatory texts can help learners 
organise the information into a coherent representation and integrate it with existing 
knowledge. Like others such as Tabachneck-Schijf and Simon (1998), they found 
learners do not always attend to the correspondence between the representations. 
Showing the related representations in connection to each other does not guarantee 
that learners perceive and encode them in a related manner. 



Introduction 

21 

In their study on genetics reasoning with multiple external representations, Tsui and 
Treagust (2003) make several claims about the positive effect of using multiple 
representations. They conclude that the use of multiple external representations in 
the learning environment “BioLogica” led students to construct deeper 
understanding of genetics as well as motivating their learning and constraining their 
interpretation of the phenomena of genetics. The authors argue that as students were 
intrinsically motivated in their learning of genetics, they were likely to be more 
engaged in reasoning and problem-solving tasks than in an otherwise normal 
classroom situation without these computer-based multiple representations. 
However, not all students liked genetics and BioLogica activities did not motivate 
them in their learning. They found that only students who had ‘mindful’ interaction 
with the representations benefited from them. Learners’ mindfulness in interacting 
with multiple representations appeared to be crucial in the development of genetics 
reasoning and in the transfer of that reasoning to new problem situations. 
 
Of the 4 tasks presented in the section on Processing multiple representations on 
page 17, relating and translating are unique for learning with multiple 
representations. In our research we focus on these two processes. Since learners do 
not automatically relate different representations and translate between them, they 
need to be supported in both processes. In the remainder of this section we describe 
types of support aimed at supporting such relating and translating between 
representations. 
 
Support for relating 
We define relating as finding similarities and differences of different representations 
at a surface level. Surface level support is aimed at making the relations between 
multiple representations visible for the learner (see e.g., Seufert, 2003; Seufert & 
Brünken, 2006). Surface feature level support only shows the relations between 
representations, it does not explain them. Relating representations can be supported 
in the following ways: 
 
1. Dynamic linking 
2. Colour coding 
3. Integration 
4. Hyperlinks 
 
Support for relating can be passive or active (e.g., Bodemer, Ploetzner, Feuerlein, & 
Spada, 2004). Passive support tries to make the relations between the 
representations visible for the learner. With active support learners decide when the 
relations between the representations are made visible. Dynamic linking, colour 
coding and integration can be characterised as passive support, whereas the support 
of relating with hyperlinks can be characterised as active support.  
 
Dynamic linking 
Dynamic linking makes relations between representations explicit by continuously 
updating all representations. If a learner, for example, presses a start button to start a 
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car moving in an animation, a corresponding graph can show the time and distance 
travelled simultaneously. By doing so, the learner can observe both representations 
and learn the relation between the moving car and the graph.  
 Although several authors suggest dynamic linking as powerful support for 
relating representations, it also has its drawbacks. Lowe (1999) warns that dynamic 
linking may lead to cognitive overload, since learners need to attend to and relate 
changes that occur simultaneously in different regions of different representations. 
In our opinion this is only problematic if the learner has limited control over the 
learning environment.  A solution could be to give learners more control over the 
learning environment. In the example mentioned earlier, the learner could be given 
the opportunity to move the car stepwise; in that way the learner can attend to the 
changes at his or her own pace. 
 Another problem with dynamic linking is mentioned by Ainsworth (1999). She 
points out that dynamic linking may hinder learners in understanding the relations 
between the representations, as it may discourage reflection. This is the reason why 
we categorise dynamic linking as passive surface level support. It does not explicitly 
support learners in understanding the relations between representations. It only 
makes the relations visible. Since understanding of the relations between 
representations is necessary to get a deeper understanding of the domain, it is 
important that a learning environment does not rely on dynamic linking solely. For 
understanding, additional deep level support is needed. 
 
Colour coding 
Colour coding is a powerful information mapping technique. It is a very effective 
support measure to show relations between objects (e.g., Kozma, 2003; Kozma, 
Russell, Jones, Marx, & Davis, 1996; Lohse, 1993). When corresponding 
representation objects are shown in the same colour, learners are supported in 
finding the relations. As Lohse (1993) found, colour coding can help to reduce the 
cognitive overhead involved in associating elements to each other. He compared use 
of symbols with colour coding and found colour coding facilitated the association 
better. Since colour has no specific meaning of its own, it does not add additional 
meaning to the representation(s). Symbols can have their own meaning and, 
therefore, learners can give meaning to symbols that is not intended by the 
designers. Moreover, symbols can be interpreted differently by different learners.  
 
Integration 
In multi-representational learning environments, split-attention effects (e.g., 
Chandler & Sweller, 1991) should be considered. In a multi-representational 
learning environment information is varied over different representations and 
learners have to relate and translate between the representations to acquire an 
integrated mental model of the domain. Chandler and Sweller argue that ineffective 
instruction occurs if learners are unnecessarily required to mentally integrate 
disparate sources of information such as separate text and diagrams. They state that 
such split-source information may generate a heavy extraneous cognitive load, 
because material must be mentally integrated before learning can commence. 
Therefore, designers should consider if it is necessary to split the information over 
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different representations. Chandler and Sweller suggest that sometimes it is better to 
integrate the different sources of information. Physical integration of representations 
makes relations between representations explicit by placing corresponding elements 
close to each other. By physical integration of information the cognitive effort 
required to mentally integrate disparate sources of information can be reduced or 
eliminated, resulting in availability of resources for productive learning (Ayres & 
Sweller, 2005; Mayer, 2005). With regard to the translation process, having all 
related elements in the same place makes it easier to interpret the similarities and 
differences of corresponding features. 
 It is, however, not always useful to integrate different sources of information, 
especially when the learning goal is for learners to find relations between different 
representations themselves. Moreover, Chandler and Sweller (1991) found that 
physical integration is important only where the disparate sources of information are 
unintelligible unless integrated. If it is not necessary to integrate sources of 
information to understand them, a redundant source of information may need to be 
removed. This may sound obvious, but it is not easy to identify whether learners 
need to integrate different sources of information to understand the domain. This 
depends heavily on the learners’ prior knowledge and the represented domain. 
Therefore, it is not always possible to predict beforehand if integration will be 
beneficial or not. 
 The complexity of the representation may be a problem for integration. An 
important reason to use multiple separate representations is that providing one 
(integrated) representation would become too complex. Whether a representation 
becomes too complex depends on the represented domain and the target group. 
 
Hyperlinks 
In a series of experiments Seufert, Jänen and Brünken (2007) implemented 
hyperlinks for learners to make relations between multiple representations visible. 
According to the authors, inter-representational hyperlinks may foster the visual 
search for correspondences. Relevant concepts were marked as a hyperlink in a text. 
When clicking a link, arrows pointed to corresponding parts in a picture. They 
found the use of hyperlinks was only effective when the learning task was not 
complex or when the learners had high expertise. It seems hyperlinks can be used 
effectively if the learners can make sense of the relations. If they are unable to 
interpret the correspondences shown, additional support is necessary. 
 
Support for translating 
We define translating as having to interpret the similarities and differences of 
corresponding features of two or more representations. By translating between 
representations, learners are processing the learning material at a deep level. Deep 
level support is aimed at explaining the relations between the representations (see 
e.g., Seufert, 2003; Seufert & Brünken, 2006). Explanations can come from the 
system or learners can be asked to come up with explanations. Translation between 
representations can be supported in the following ways: 
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1. Explanatory texts 
2. Active integration 
3. Hints and prompts 
 
Just as with support for relating, support for translating can be either passive or 
active. With passive translation, the translation process is done for the learner. The 
translation from one representation to the other is explained by the learning 
environment. With active translation, learners have to explain the relations between 
the representations themselves and reason with them. 
 
Explanatory texts 
Explanatory texts describe the relations between two or more representations in text 
and, therefore, can be considered as passive translation. Seufert (2003), who uses 
the term ‘verbal descriptions’, examined whether directive and non-directive textual 
help had different effects on coherence formation. A typical example of a directive 
text would be: “The change of electrons is visible in both pictures.”. A typical 
example of a non-directive text would be: “Are there corresponding processes in 
both pictures and where are the differences?”. She found that directive help 
supported both recall performance as well as comprehension processes whereas she 
had expected non-directive help to be more effective for the latter. As non-directive 
help is believed to be more demanding than directive help, non-directive help may 
be hard to implement successfully in a complex learning environment, which was 
the case in Seufert’s study.  
 Seufert and Brünken (2006) used explanatory texts to explain how to globally 
link information between representations. The descriptions were aimed at 
stimulating the process of integrating multiple representations. The authors 
compared the following combinations of surface level help (SLH) and deep level 
help (DLH): no help, SLH only, DLH only and SLH plus DLH. They did not find 
significant differences between the experimental conditions, although the combined 
condition showed the highest post-test scores. 
 Although we categorise textual support as deep level support, the question 
arises whether explanatory texts alone support deeper understanding. We believe it 
is more effective to try to encourage learners to relate and translate between multiple 
representations actively. 
 
Active integration 
With active integration, learners construct an integrated representation from two 
separate sources of information. A learner can be asked, for example, to drag labels 
to the right positions in a diagram in order to construct an integrated representation. 
The learning environment could provide feedback on whether the labels were 
dragged to the right places. According to Bodemer et al. (2004) presenting static 
versions of dynamic representations before dynamic ones gives learners time to 
identify the important elements and become familiar with them. Moreover, the 
integration of static representations has the purpose of relating unfamiliar 
representations to familiar ones before working with the actual learning material. 
The authors argue that viewing the relations between representations does not direct 
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support learners in constructing meaningful knowledge. The learners might remain 
rather passive and thus might not mentally process and integrate the learning 
material in an adequate way.   
 In a series of experiments Bodemer et al. (2004) and Bodemer and Faust (2006) 
found positive learning results when students had the opportunity to actively 
integrate multiple representations. However, they only found good results when the 
students were capable of integration. When students had low prior knowledge and 
therefore were not able to integrate the representations, a non-integrated or pre-
integrated format resulted in better learning outcomes. 
 
Hints and prompts 
Giving hints and prompts to relate and translate between representations might be a 
good way to support learners to benefit from multiple representations. Giving these 
hints and prompts may help learners to realise that the purpose of using multiple 
representations is for them to learn from relating and translating between 
representations. Hints and prompts look like the non-directive support described 
earlier with the difference that learners are asked to explicitly answer the questions 
asked. An example of a prompt would be: “You saw that the value of moment 
changes in the equation as soon as you change the angle of the force in the 
animation. Please explain why this happens.” In this example learners are asked to 
link the change of the angle to the change of the arm in the animation first (within-
representation link) and then link this to the change of arm (and therefore moment) 
in the equation (between-representation link).  
 
We believe it is important that learners realise that the purpose of providing them 
with multiple representations is for them to integrate these representations. Several 
studies have shown that learners often reason with one representation at a time (e.g., 
Tabachneck-Schijf & Simon, 1998), whereas the intended value of the multiple 
representations lies in their combination. Explicitly asking learners to relate or 
translate two or more representations may solve this problem. Moreover, prompting 
learners in this way may also result in (prompted) self-regulation (Azevedo, 2005; 
Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi, Deleeuw, Chiu, & Lavancher, 
1994) in the sense that they have to think about the relations between 
representations and have to formulate an answer to the question(s) asked. Many 
authors agree that learning from multiple representations “… is not a passive 
process, but requires that the learners actively engage in the processing of the 
representations.” (Van Meter, Firetto, & Higley, 2007, p. 7). Explicitly asking 
learners to process the information from different representations may help. 
 However, an unanswered question is: Are learners capable of doing this? We 
assume that learners can do this when additional surface feature support is provided 
in the form of dynamic linking, physical integration and/or sequencing 
representations. 
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SimQuest 

The studies presented in this thesis were all carried out in the simulation-based 
learning environment SimQuest. This section describes the basic idea behind inquiry 
learning and the processes involved. Thereafter, a description of a typical SimQuest 
learning environment will be given. 
 
Simulation-based inquiry learning 
The basic idea behind inquiry learning is to provide learners with an environment in 
which they can discover a domain by exploration (de Jong & van Joolingen, 1998). 
In inquiry learning learners are in control of their own learning process. They 
construct their own knowledge of the domain by stating hypotheses, doing 
experiments and interpreting the data. Doing experiments on natural systems is an 
important source of information to construct scientific knowledge and plays an 
important role in science education (van Joolingen & de Jong, 2003). 
 However, there are many situations where computer simulations have 
advantages compared to natural systems (Alessi & Trollip, 1985; de Jong, 1991). 
Computer simulations offer learners the opportunity to perform experiments in 
controlled settings. They are safe to work with, increase the availability of 
inaccessible or expensive systems, use minimal resources, are modifiable, and allow 
for experimentation with systems that normally cannot be physically manipulated. 
Moreover, simulations offer new instructional opportunities. For example, 
simulations visualize processes that are invisible in natural systems by, for instance, 
showing animations of speed vectors or graphs of quantities such as energy or 
impulse. In this way, multiple views and multiple representations of the simulated 
system can be offered (see e.g., Ainsworth, 1999; van der Meij & de Jong, 2006). 
 Computer simulations contain an executable model of a (natural) system. They 
simulate the behaviour of the modelled system. Learners explore the simulation 
model by manipulating values of (input) variables and observing the behaviour of 
other (output) variables. By understanding the relations between the variables, it is 
expected that learners acquire a deeper understanding of the domain and are able to 
transfer this knowledge to similar ‘problems’ in other (real) situations. 
 
Inquiry learning processes 
In our work we distinguish two types of learning processes that are important for 
inquiry learning: transformative processes and regulative processes (de Jong, 2006; 
Njoo & de Jong, 1993). Transformative processes directly yield knowledge, 
whereas regulative processes are necessary to manage the inquiry learning process.  
 
Transformative processes 
Transformative processes include orientation, hypothesis generation, 
experimentation, data interpretation and evaluation. 
 Orientation. During the orientation process, learners build their first ideas of the 
domain and the learning environment. Learners might read an introductory text or 
background information, might identify the variables that are involved and might 
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manipulate the variables in the simulation to get a first impression of the possible 
relations between the variables. 
 Hypothesis generation. Hypothesis generation is regarded as an important 
process in inquiry learning. Learners formulate a statement about the relation 
between two or more input and output variables by using the knowledge acquired in 
the orientation phase. Learners’ hypotheses form the basis for performing 
experiments. 
 Experimentation. During the experimentation process the learners design and 
perform experiments to test their hypotheses. To do so, they decide which variables 
to manipulate and observe. 
 Data interpretation. During the data interpretation process learners try to make 
sense of the data collected during the experimentation process. This can involve the 
extraction and interpretation of data from several representations, such as graphs, 
numerical outputs, animations and tables. 
 Evaluation. During the evaluation process learners compare the data to the 
predictions made during hypothesis generation. Based on the gathered data they 
have to decide if their hypothesis holds or not. This may lead to revision of 
hypotheses and/or generation of new ones. 
 
Regulative processes 
Regulative processes are the processes that learners have to employ to keep track of 
their progress during the transformative processes. Regulative processes include 
planning and monitoring. 
 Planning. Planning the inquiry activities is imperative. Since learners are 
responsible for their own learning process in inquiry learning environments, they 
have to plan this process themselves. Planning involves making decisions as to 
which steps to take in what order. Learners have to plan their activities before they 
carry them out. 
 Monitoring. Monitoring is the process of keeping track of the steps taken and 
the actions done. During all transformative processes, learners must look back and 
monitor what they have done so far. 
 
Cognitive scaffolds 
Despite its potential, learners have considerable difficulties with simulation-based 
inquiry learning. As a result, inquiry learning does not always lead to better learning 
results compared to other types of learning. De Jong and van Joolingen (1998) 
provide an extensive overview of the problems associated with inquiry learning. 
Learners have particular problems with: hypothesis generation, setting up 
experiments, data interpretation and regulation. 
 Cognitive scaffolds can help to prevent or overcome the problems associated 
with simulation-based inquiry learning (de Jong & van Joolingen, 1998; Mayer, 
2004). The basic idea is to embed the simulation in an instructional environment 
that supports the processes of inquiry learning. In such a supportive environment the 
behaviour of the simulation and that of the instructional support should be in line. 
This leads to the concept of integrated simulation learning environments (de Jong, 
van Joolingen, Veermans, & van der Meij, 2005). In such an environment, 
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simulations and instructional support measures cooperate to offer just-in-time and 
adequate support for the learners’ learning processes. The instructional support 
measures provide the cognitive scaffolds needed for successful learning. Scaffolds 
for the transformative processes include giving domain information during the 
orientation process, providing tools to support hypothesis generation and providing 
experiment hints. Scaffolds for the regulative processes include model progression, 
planning support, monitoring support and structuring the learning process. These 
integrated simulation learning environments can be built with our authoring system 
SimQuest. 
 
Inquiry learning with SimQuest simulations 
SimQuest simulations allow learners to engage in inquiry learning activities with a 
simulation, supported by cognitive scaffolds. A typical SimQuest simulation consist 
of: (1) a simulation model, (2) a simulation interface providing one or more visual 
representations of the simulation model to control, manipulate, and observe the 
behaviour of the simulation model and (c) instructional support measures to support 
the inquiry learning process. In this section we will give examples of cognitive 
scaffolds used in the studies reported in this thesis. 
 
Support for orientation 
Support for orientation can be provided in a number of ways. Figure 1-15 shows a 
possible introduction of a simulation on the physics topic of moments. With use of 
hypertext and corresponding pictures, learners are introduced to the topic of 
moments by presenting an everyday life example: someone carrying a crate far from 
the body and close to the body. In this simulation the topic is presented as a 
problem: “Why does the crate feel heavier when you carry it far from your body?” 
Learners are then introduced to variables involved and are told they are going to 
find the solution to the problem with the simulation learning environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-15  Introduction of SimQuest simulation Moments 
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After the introduction, learners are asked to open the first assignment, which 
introduces them to the simulation interface (see Figure 1-16). During the orientation 
process the most basic version of the simulation model is used to restrict the number 
of (new) variables and relations. In the case of the Moments simulation only 
moment (M), force (F) and arm (a) are present during the orientation process. 
Learners therefore only need to orient themselves to these variables and the role 
they play in the domain. The assignment supports learners in getting familiar with 
both the simulation interface and the variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-16  Orientation in SimQuest simulation Moments 

 
Assignments can support transformative and regulative inquiry processes. They 
support transformative processes, for example, by giving domain information. They 
support regulative processes by providing learners with short-term goals for their 
learning progress. SimQuest offers a range of different assignment types.  
 Do it/Do them assignments present their goal to the learner without asking for a 
direct answer. Do it assignments present the learner with one initial state of the 
simulation model. With Do them assignments, learners are asked to compare two or 
more pre set initial states.  
 Open answer assignments ask the learner to give an answer in text. 
 Investigation/Explicitation assignments ask the learner to inquire about the 
relation between two or more variables. The assignments offer several possible 
hypotheses that can explain the observed phenomena, from which the learner has to 
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select one or more possibilities. The assignments can trigger specific feedback based 
on the answer(s) chosen. The assignments differ in the number of initial states of the 
simulation model.  
 Specification assignments ask the learner to predict the values of certain 
variables when the simulation reaches a state defined by the author.  
 Optimisation assignments require learners to perform a task within given 
constraints and with a set target. The learner has to vary the variables such that the 
constraints are not violated and the target is reached. 
 
After answering the assignment, learners are given feedback on their answer. In 
SimQuest feedback can be combinations of text, images, videos and/or sound. In 
our simulations we provide learners with informative feedback. After learners give 
an answer, we always explain why it is correct or incorrect. 
 
Support for hypothesis generation 
Although SimQuest offers specific tools for hypothesis generation (see Gijlers, 
2005; van Joolingen & de Jong, 1991), in our studies we have decided to support 
hypothesis generation with assignments because we did not want to overwhelm the 
learners with specific tools. 
 
Support for experimentation 
Support for experimentation can have two forms: general experimentation hints 
such as “do not vary too many variables at the same time” or specific 
experimentation hints describing the precise conditions of the experiment. Figure 1-
17 shows an example of a specific experiment hint. 
 The experiment hint is provided by an assignment asking the learner to perform 
a specific experiment and to give the answer by choosing the right alternative plus 
an explanation. After giving the answer, the learner receives informative feedback. 
 When performing experiments learners can use the hint(s) to explore the 
simulation. Although in our simulations it is not obligatory to do the assignments, 
we often see learners do them all. On the one hand, this is positive, since several 
studies (e.g., Swaak, van Joolingen, & de Jong, 1998) have confirmed that this type 
of support helps learners to gain better learning results compared to working with 
simulations without support. On the other hand, this is problematic, since many 
learners only do the assignments and are not exploring the simulation to the extent 
we would like them to do, that is, setting up their own experiments and thereby 
exploring the simulation themselves. In our recent studies we have specifically 
focused on this aspect. We are trying to motivate learners to use the assignments as 
starting points for designing and carrying out their own experiments. 
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Figure 1-17  Example of a specific experiment hint 

 
Support for data interpretation 
Data interpretation can be supported by different tools. Again, assignments can 
fulfil this function by asking learners to answer a specific question and giving them 
feedback on the answer given. Investigation, specification and optimization 
assignments can be especially useful for data interpretation. Another supportive tool 
is the SimQuest monitoring tool (see Veermans, 2002), shown in Figure 1-18. With 
the monitoring tool learners can save experimental data and compare it. To make 
comparison easier they can rerun saved experiments without having to set up the 
experiment again. 
 
Support for evaluation 
Support for evaluation in SimQuest can have different forms. The most basic type of 
support is asking learners to draw conclusions. This can be supported by an open 
answer assignment. Learners can be asked to revisit the hypotheses they stated 
earlier and comment on them in their conclusion. A summary containing all key 
aspects of the domain could be provided as feedback.  
 Additional tools for evaluation are a SimQuest modelling tool (see e.g., Löhner, 
van Joolingen, & Savelsbergh, 2003) and SimQuest concept map tool (see e.g., 
Gijlers, 2005).  
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Figure 1-18  Assignment with monitoring tool for data interpretation 

 
Support for regulation 
Learners’ regulation of the inquiry process can be supported by structuring the 
transformative processes, following the inquiry cycle of orientation, hypothesis 
generation, experimentation, data interpretation and evaluation. Assignments, 
explanation and dedicated tools can guide the learner through the learning 
environment. The seemingly simple SimQuest monitoring tool is a good support 
tool for keeping track of experiments done. When using this tool learners can easily 
observe what they have done so far and can replay their experiments with two 
mouse clicks instead of setting up the complete experiment again. 
 Another way to structure the inquiry process is by providing model progression 
(White & Frederiksen, 1990). With model progression the learning environment can 
be sequenced from simple to complex by increasing the complexity of the 
simulation model step-by-step. Figure 1-19 shows a representation of an oscillatory 
motion model with increasing number of variables acting on the system. 
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Figure 1-19  Example of model progression 

 
The ‘best’ support 
Although, most researchers agree that learners need support in inquiry learning 
environments, the question remains: What is the best way to implement this 
support? In the previous sections we gave examples of support in SimQuest based 
on the inquiry processes identified by Njoo and de Jong (1993). In our research we 
have found that these tools can help learners to overcome the problems associated 
with inquiry learning. However, supporting learners in inquiry learning always 
affects the learning process. Designers of integrated simulation learning 
environments need to find the right balance between freedom and guidance. Njoo 
and de Jong (1993) identified three dimensions for support: non-directive versus 
directive, stimulating versus restricting, and obligatory versus non-obligatory.  
 Directive support stimulates the learner to perform a task, whereas non-
directive support does not. An example of directive support is asking learners to 
investigate specific relations between given variables. An example of non-directive 
support is giving the learners definitions of investigation, relation and variables.  
 Restrictive support constrains the learners in what they are allowed to do in 
order to prevent them from floundering. This can be accomplished, for example, by 
providing model progression or presenting them with a pre-specified hypothesis list 
as opposed to allowing them to express hypotheses in natural language. 
 Obligatory support is imposed upon learners, as opposed to leaving the use of 
instructional measures as their own decision. An example of obligatory support is to 
force learners to state a hypothesis before an experiment can be carried out. 
 
In order to maximize learner initiative, support in inquiry learning should be ideally 
non-directive, stimulating and non-obligatory (Veermans, 2002). A problem with 
this kind of support is that learners, especially the ones that need support most, often 
fail to recognize or neglect the offered support. The practical consequence is that 
support is usually located more towards the other ends of these dimensions. 

Purpose of our research 

In this introductory chapter we described the potentials and challenges of learning 
with multiple representations. To successfully learn with multiple representations in 
general and in simulation-based learning environments in particular, support is 
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needed. This thesis reports three studies in which we examined how learners can be 
supported to relate and translate between multiple representations. To do this, three 
research questions were posed: 
 
Does integrating and/or linking dynamic multiple representations have an effect on 
learning outcomes? 
 
The goal of the first study was to determine if integrating and/or linking dynamic 
multiple representations has an effect on learning outcomes. In three experimental 
conditions, the same learning environment, that of the physics topic of moments, 
was presented with separate, non linked representations (S-NL condition), with 
separate, dynamically linked representations (S-DL condition), and with integrated, 
dynamically linked representations (I-DL condition). The learning environment was 
divided into low complexity and high complexity parts. The results and implications 
of this study are discusses in chapter 2. 
 
Does sequencing dynamic representations have an effect on learning outcomes? 
 
In the second study, described in chapter 3, we used the findings of study 1 as a 
starting point and examined if sequencing dynamic representations has an effect on 
learning outcomes. Two versions of the same simulation-based learning 
environment, that of the physics topic of moments, were compared: a learning 
environment providing the representations step-by-step (R-Step condition) and a 
learning environment providing all representations at once (R-Once condition). 
 
Does sequencing dynamic representations combined with explicit instruction to 
relate and translate between representations have a positive effect on learning 
outcomes? 
 
Where study 1 and 2 focused on surface level support, in study 3 we examined the 
effect of providing hints and prompts to encourage the subjects to translate between 
representations. This study is described in chapter 4. Two versions of the same 
simulation-based inquiry learning environment on the physics topic of moments 
were compared. One learning environment provided all representations at once and 
instructional support focused solely on relations between the domain variables (R-
Once condition). The second learning environment provided the subjects with 
representations step-by-step and with instructional support that focused additionally 
on relating representations and translating between them (R-Step condition). 
 
Chapter 5 presents a review of the results and conclusions of the three studies, 
followed by a discussion of the general findings. After this, similarities and 
differences between the studies as well as limitations are discussed. The chapter 
concludes with sections on implications and further research. 
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Integrating and dynamic linking2 
 
Abstract - In this study, the effects of different types of support for learning from 
multiple representations in a simulation-based learning environment were examined. 
The study extends known research by examining the use of dynamic representations 
instead of static representations and it examines the role of the complexity of the 
domain and the learning environment. In three experimental conditions, the same 
learning environment, that of the physics topic of moments, was presented with 
separate, non-linked representations (S-NL condition), with separate, dynamically 
linked representations (S-DL condition), and with integrated, dynamically linked 
representations (I-DL condition). The learning environment was divided into low 
complexity and high complexity parts. Subjects were seventy-two students from 
middle vocational training (aged 16 to 18). Overall, the I-DL condition showed the 
best learning performance. Subjects in the I-DL condition, compared with the S-NL 
condition, showed better learning results on post-test items measuring domain 
knowledge. A trend in favour of the I-DL condition compared with the S-NL 
condition was found on post-test items measuring subjects’ ability to translate 
between different representations. A subjective measure of experienced difficulty 
showed that subjects in the I-DL condition experienced the learning environment as 
easiest to work with. The complexity of the learning environment and domain 
interacted with the effects of the experimental conditions. Differences between 
conditions were only found on the test items that corresponded to the high 
complexity part of the learning environment. 

 
2 van der Meij, J., & de Jong, T. (2006). Learning with multiple representations: Supporting students' 
learning with multiple representations in a dynamic simulation-based learning environment. Learning and 
Instruction, 16, 199-212. 
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Introduction 

Many learning materials offer multiple representations. Textbooks, for example, 
often use photographic images or diagrams to illustrate and explain parts of the text. 
In early computer-based learning environments, texts and images were provided in 
the same way as in textbooks, namely as static images. Therefore, research on 
representations in textbooks was also valid for these early computer based learning 
environments. In modern, computer-based learning environments many dynamic 
representations are available, including: audio, video, animations, dynamically 
changing graphs and tables (Lowe, 2003), and interactive dynamic visuals. This 
development poses new challenges and opportunities and calls for a new line of 
research to study the implications for learning using these multiple dynamic 
representations (Ploetzner & Lowe, 2004).  
 
Benefits of multiple representations 
Different types of (dynamic) representations exist, and combining different 
representations in one interface may have several advantages (e.g., Ainsworth & van 
Labeke, 2004).  
 First, each representation can show specific aspects of the domain to be learned. 
Different types of representations may be useful for different purposes, as they 
differ in their representational and computational efficiency (Larkin & Simon, 
1987). Text and pictures, for example, are good representations for presenting the 
context of a problem. Diagrams are well suited for presenting qualitative 
information, and graphs, formulas, and numeric representations can be used to show 
quantitative information. Graphs, in particular, are important tools for enabling 
learners to predict relationships between variables and to show the nature of these 
relationships (McKenzie & Padilla, 1984). It is expected that learners benefit from 
the properties of each representation and that this will lead to a deeper 
understanding of the subject being taught (Ainsworth, Bibby, & Wood, 1997; de 
Jong, Ainsworth, Dobson, van der Hulst, Levonen, Reimann, Sime, van Someren, 
Spada, & Swaak, 1998; Seufert, 2003; van Labeke & Ainsworth, 2001).  
 A second benefit of a multi-representational learning environment is that one 
representation can constrain the interpretation of another representation. An 
animation, for example, can constrain the interpretation of a graph. There is a strong 
tendency among learners to view graphs as pictures rather than as symbolic 
representations (Kaput, 1989; Mokros & Tinker, 1987). When the animation shows 
a car riding up a hill with constant power, it constrains the interpretation of the 
speed shown in a line graph. The animation can show learners that the line graph is 
not representing a valley but the speed of the car; they can see that the car slows 
down going up the hill and that it accelerates going down the hill. The purpose of 
the constraining representation is not to provide new information but to support the 
learners’ reasoning about the less familiar representation (Ainsworth, 1999). 
 A third advantage of the use of multiple representations is that by translating 
between representations, learners build abstractions that may lead to a deeper 
understanding of the domain (Ainsworth & van Labeke, 2004). 
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Problems with multiple representations 
When learning with multiple representations, learners are faced with four tasks. 
First, they have to understand the syntax of each representation. They must learn the 
format and operators of the representations. For example, the format of a graph 
would include attributes such as labels, number of axes, and line shapes. Examples 
of graph operators are finding the gradients of lines, minima and maxima, and 
intercepts (Ainsworth et al., 1997). Second, learners have to understand which parts 
of the domain are represented. In a simulation about a car in motion, for example, 
the learner has to relate the slope of the line in a speed-time graph to the right 
property of the moving car. A relevant question would be: Does the line represent 
the acceleration of the car or does it represent the speed of the car? In addition, the 
operators for one representation are often used inappropriately to interpret a 
different representation. This results in common mistakes such as viewing a graph 
as a picture (see Mokros & Tinker, 1987). Third, learners have to relate the 
representations to one another if the representations (partially) present the same 
information. We define relating as linking the surface features of different 
representations. When, for example, a numerical representation and a graph have to 
be related, learners must find the corresponding variables in both representations. 
Fourth, learners have to translate between the representations. We define translating 
as having to interpret the similarities and differences of corresponding features of 
two or more representations. 
 A first problem that learners may encounter when learning with multiple 
representations is that they have difficulties relating different representations. This 
problem is related to the split-attention problem as studied by Chandler and Sweller 
(1991) and Mayer and Moreno (1998). When learning with separate representations, 
learners are required to relate disparate sources of information, which may generate 
a heavy cognitive load that may leave fewer resources for actual learning (Sweller, 
1988, 1989). 
 Second, a number of studies have reported problems that novices have in 
translating between representations. Tabachneck, Leonardo, and Simon (1994) 
reported that novices learning with multiple representations in economics did not 
attempt to translate information between line graphs and written information. 
Experts, in contrast, tied graphical and verbal representations closely together. 
Similar results were reported by Kozma (2003), who reviewed experimental and 
naturalistic studies examining the role of multiple representations in understanding 
science. He looked at the differences between expert chemists and chemistry 
students in their representational skills and in their use of representations in science 
laboratories. Experts coordinated features within and across multiple representations 
to reason about their research. Students, on the other hand, had difficulty moving 
across or connecting multiple representations, so their understanding and discourse 
were constrained by the surface features of individual representations. 
 
Types of support 
The problems that were mentioned in the preceding section in regard to relating and 
translating representations traditionally (with static representations) are approached 
by integrating representations. Dynamic presentations offer the possibility of 
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connecting representations not only by integrating them, but also by linking them so 
that a change in one representation is concurrent with a change in another 
representation. 
 
Integrating 
One way to make relations between representations explicit for the learner is to 
physically integrate the representations (e.g., Chandler & Sweller, 1991). Multiple 
representations, when integrated, appear to be one representation showing different 
aspects of the domain. Through integration, relations between the representations 
are directly shown to the learner. Integrating representations also supports learners 
in the translation process. Having all related elements in the same place makes it 
easier to interpret the similarities and differences of corresponding features. Several 
studies conclude that learning with integrated representations leads to better 
knowledge than learning with representations that are not integrated (Ainsworth & 
Peevers, 2003; Chandler & Sweller, 1991; Mayer & Moreno, 1998; Tabbers, 
Martens, & Van Merriënboer, 2000). Different results were found by Bodemer et al. 
(2004). They compared learning from a situation in which learners had to integrate 
representations themselves to learning from a non-integrated format and a pre-
integrated format. Bodemer et al. found that learners in the integrated condition did 
not learn more than learners in the non-integrated condition, unless learners had to 
actively integrate the representations themselves. In their study, the active 
integration was done with static representations, whereas the learning environment 
contained dynamic representations. 
 
Dynamic linking 
A second way to make the relation between different representations explicit for the 
learner, in the case of dynamic representations, is by providing the learner with 
dynamic linking (Ainsworth, 1999). With dynamically linked representations, 
actions performed on one representation are automatically shown in all other 
representations. If a learner, for example, changes the value of a force in a numerical 
representation, the corresponding representation of the force in an animation is 
updated automatically. It is expected that dynamic linking helps the learner to 
establish the relationships between the representations (e.g., Kaput, 1989; Scaife & 
Rogers, 1996). An environment using multiple linked representations can facilitate 
novices’ learning even if their understanding of symbolic expressions draws heavily 
on an incomplete or inaccurate knowledge of the domain (Kozma, Russell, Jones, 
Marx, & Davis, 1996). Some literature, however, also mentions disadvantages of 
dynamic linking. Ainsworth (1999), for example, asserts that a constructivist 
approach to education might argue that dynamic linking leaves a learner too passive 
in the process. Dynamic linking may discourage reflection on the nature of the 
translations, leading to a failure by the learner to construct the required 
understanding (p. 133). Another problem with dynamic linking might be that with 
multiple dynamically changing representations, learners need to attend to and relate 
changes that occur simultaneously in different regions of various representations, 
which may lead to cognitive overload (see Lowe, 1999). 
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Research questions 
The goal of this study was to determine if integrating and/or linking dynamic 
multiple representations has an effect on learning outcomes. This was examined in a 
(simulation based) learning environment with dynamic representations. Most of the 
studies on integrating representations (Chandler & Sweller, 1991; Mayer & Moreno, 
1998; Tabbers et al., 2000) investigated the integration of one diagram and text. 
Only the environment used by Ainsworth and Peevers (2003) consisted of more than 
two representations. These representations were also more complex than the 
representations used in the other studies. The study by Bodemer et al. (2004) 
suggested that the complexity of the domain and learning environment might 
influence the effects of integrating representations on learning. They found effects 
of integrating representation in a low complexity environment, but not in an 
environment of a higher complexity. In this study, we took complexity into account 
by dividing the learning environment into low and high complexity parts. 
 The context of the study was a guided inquiry simulation-based learning 
environment called ‘Moment’. Learners studied the physics topic of ‘moments’ by 
means of multiple representations of an open-end spanner tightening a bolt and of a 
crane hoisting a load. Three versions of the same simulation-based learning 
environment were compared: a learning environment with separate, non-linked 
representations (S-NL condition), a learning environment with separate, 
dynamically linked representations (S-DL condition), and a learning environment 
with integrated, dynamically linked representations (I-DL condition). We did not 
include a fourth (integrated, non-linked) condition, because integration and non-
linking cannot be combined (see materials section). All learning environments 
contained the same content. We expected that the S-DL and I-DL learning 
environments would lead to better learning results than the S-NL learning 
environment. We expected that the I-DL learning environment would lead to the 
best learning results. 
 With regard to complexity, we expected a positive effect of integration as long 
as the interface did not become too complex. We expected larger differences 
between conditions in the high complexity part of the learning environment 
compared with the low complexity part, because in the high complexity part, more 
representations are presented simultaneously and/or more variables are introduced, 
which leads to more complex representations and relations. This would mean that 
support in the form of integration or linking would be more necessary and have a 
larger impact (Lowe, 1999). It could, however, also be the case that the integration 
of representations hinders learning when the representation becomes too complex 
(see Bodemer et al., 2004). In that case, subjects in the I-DL condition would not 
perform as well as subjects from the S-DL condition. To assess this effect, we 
measured the subjectively experienced complexity of the different parts of the 
learning environment. 
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Method 
Subjects 
Subjects were Dutch students from four middle vocational training schools. The 
subjects were between 16 and 18 years old. They were all taking a course on 
mechanical engineering. One-hundred-twenty-eight subjects started the experiment; 
36 subjects missed the session of working with the learning environment and two 
subjects did not take part in the pre-test, which resulted in 90 subjects participating 
in all three phases of the experiment. Subjects who worked with the learning 
environment were randomly assigned to one of the three experimental conditions. 
 This paper reports analyses done with 72 subjects. From the set of 90 subjects 
participating in all phases of the experiment (pre-test, working with the learning 
environment, and post-test), 18 subjects were removed from the sample because 
they did not work through all five progression levels in the learning environment 
and, therefore, did not explore all parts of the simulated domain. Table 2-1 shows 
how the subjects were distributed across conditions and schools. 
 
Table 2-1  Distribution of subjects per condition 

 Condition  

School S-NL S-DL I-DL Total 

1 (m/f) 4 (4/0) 7 (7/0) 6 (6/0) 17 (17/0) 

2 (m/f) 5 (5/0) 4 (4/0) 5 (5/0) 14 (14/0) 

3 (m/f) 7 (6/1) 6 (4/2) 5 (3/2) 18 (13/5) 

4 (m/f) 8 (8/0) 7 (7/0) 8 (8/0) 23 (23/0) 

Total 24 (23/1) 24 (22/2) 24 (22/2) 72 (67/5) 

m = male, f = female 
 
Materials 

Computers 
The experiments were conducted in computer classrooms with IBM compatible 
Pentium III 450 MHz processors and 256 MB RAM computers. During the 
experiments, all subject actions with the computer program were logged 
automatically. 
 
SimQuest learning environment Moment 
Subjects worked with the learning environment, Moment, that was built in the 
authoring environment SimQuest (de Jong, van Joolingen, Veermans, & van der 
Meij, 2005; van Joolingen & de Jong, 2003). Learners studied the topic of moments 
in mechanical engineering. The learning environment is based on guided inquiry 
learning (de Jong & van Joolingen, 1998). Because it contains a simulation model 
that is not directly visible to the learner, the learner has to engage in inquiry 
activities in order to learn about the properties of this model, and the learner is 
guided in the inquiry process by ‘cognitive tools’ such as model progression, 
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assignments, and explanations. Learners explore the simulation model by 
manipulating values of (input) variables and observing the behaviour of other 
(output) variables. It is expected that learners acquire a deeper understanding of the 
domain by understanding the relations between the variables, and are able to 
transfer their knowledge to similar ‘problems’ in other (real) situations. 
 The learning environment has five progression levels. Table 2-2 gives an 
overview of these levels. 
 
Table 2-2  Overview of progression levels of learning environment 

 Level 

 1 2 3 4 5 

Complexity low low high high high 

Representations* 1 - 3 1 - 3 1 - 5 1 - 3 1 - 5 

Context spanner spanner spanner spanner crane 

Number of variables 3 3 3 6 4 

Qualitative / Quantitative qualitative quantitative quantitative quantitative quantitative 

Number of assignments 7 7 6 3 7 

* see Figure 2-2 
 
Learners start exploring a specific aspect of the domain by choosing an assignment 
from the menu. When opening an assignment, a corresponding simulation interface 
opens. Each assignment starts with a short description of an aspect of the domain, 
asks the learner to explore this aspect, and asks the learner to answer a question 
about it. Figure 2-1 shows an example of an assignment with corresponding 
simulation interface. 
 Figure 2-2 shows an example of an S-NL and corresponding I-DL simulation 
interface. The simulation interface contains a maximum of five representations: (1) 
diagrammatic representation, (2) concrete representation, (3) numerical 
representation3, and (4, 5) two graphs (moment-force and moment-arm or moment-
force and moment-height). 
 Learners can manipulate the input variables in all types of representations by 
either using the provided sliders (concrete and diagrammatic representations) or by 
using the arrow keys (numerical representation). If a learner manipulates a slider or 
arrow key, the corresponding changes are shown in the representations in real time. 
So, if a learner moves the force-slider, the element representing force is updated 
continuously and immediately, as is the change in moment. Learners can compare 
situations by moving the slider back and forth between different states of the 
simulation. 

 
3 In progression level 1, the numerical representation contains sliders with the indications: minimum, zero, 
and maximum. The values of input variables can be changed by these sliders. 
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Figure 2-1  Example of Moment assignment (representations from I-DL condition) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-2  Example of simulation interface. Left: representations from S-NL and 
S-DL condition. Right: representations from I-DL condition 

 
Representations 1, 2, and 3 are representations that are usually found in textbooks. 
These representations are the basic types presented to learners studying the domain 
of moments. They all support learners in getting insight into the domain from 
different perspectives. The concrete representation is a learner-controlled animation 
that provides the learner with a context for the simulated task. This representation 
links the learning material to a real life experience. In the first four levels (see Table 
2-2) the concrete representation is an animation of an open-end spanner, because 

Answer 
alternatives 

Simulation 
interface 

Assignment 

1 

2 

4 

3 

5 

1,2,3 

4 5 
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most of the learners in the target group have experience using this tool. In the fifth 
level of the learning environment, a hoisting crane is introduced, because this gave 
us the opportunity to introduce a new variable (height) and because we wanted to 
provide a new concrete context to give learners the opportunity to apply their 
knowledge in a new situation. In addition, this representation is less learner-
controlled; it changes over time after pressing a start button. The diagrammatic 
representation helps learners go beyond the concrete situation to a more abstract 
understanding of the relation between the variables involved. By providing this type 
of representation, it is expected that learners can use their acquired understanding in 
new situations. Both the concrete and diagrammatic representation present the 
domain in a qualitative way. The numerical representation gives a quantitative view 
of the variables involved. The contribution of this representation is in showing the 
values of the variables to support the numerical relations between the variables. The 
graphs are provided to help learners predict relationships between the variables. In 
the graphs, any 'pictorial' similarity to the represented domain has disappeared; 
therefore, graphs represent the domain in a more abstract way than do the concrete 
and diagrammatic representations (Bernsen, 1994). The graphs, however, give the 
learner more direct information about the relations between the variables than do the 
other representations. 
 The representations in the S-NL learning environment are not linked. Within a 
representation changing an input variable (e.g., length) leads to a real time update of 
an output variable (moment). However, changing values of variables in one 
representation does not lead to changes in the other representations. In this learning 
environment learners need to relate representations themselves. Changing values of 
variables in one representation in the S-DL learning environment, by contrast, leads 
to a change in all representations. When, for example, a learner changes the value of 
the force in the numerical representation, not only the value of the moment in the 
numerical representation but also the force and moment in all other representations 
change accordingly. In the I-DL learning environment, the diagrammatic, concrete, 
and numerical representations (representations 1, 2, and 3 shown in Figure 2-2) are 
integrated. These representations are placed ‘on top of one another,’ resulting in one 
representation showing these three representation in an integrated format. Of the 
five representations used, only the diagrammatic, concrete, and numerical 
representations could be integrated. The diagrammatic and realistic representations 
could easily be integrated because they share the same spatial properties. The 
numerical representations were also integrated because they could be placed near 
the objects in the other two representations. But, because the formats of the graphs 
differ from the diagrammatic and concrete representations, they could not be 
integrated and, therefore, are represented separately in this learning environment. 
We chose to dynamically link the graphs and the integrated representation, because 
the other representations are also dynamically linked by integrating them into one 
representation. 
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In all learning environments, colour coding is used to indicate similar variables. 
Force is coloured red, length is coloured green, and moment is coloured blue in all 
but the concrete representation. 
 The learning environment has low and high complexity parts (see Table 2-2). In 
the low complexity part, learners explore moment caused by force and length by 
investigating the behaviour of moment on a bolt caused by a force on an open-end 
spanner. They do this in a qualitative (level 1) and a quantitative way (level 2). 
Levels 3 to 5 form the high complexity part of the learning environment. In level 3, 
a moment-force and a moment-arm graph are introduced. In level 4, a second force 
is introduced, resulting in more complex representations. In this level, the graphs are 
not used in order to avoid cognitive overload. Therefore, the number of 
representations in level 4 is three. In level 5 learners explore moment caused by 
force, length and height by investigating moment on a hoisting crane caused by a 
load. In this level there are four variables and five representations. 
 
Tests and questionnaire 
A paper-and-pencil pre-test assessed the subjects’ prior domain knowledge. It was 
administered a week before working with the learning environment. A paper-and-
pencil post-test was administered directly after working with the learning 
environment. Both tests consisted of 38 multiple-choice items with four answer 
possibilities, divided into three item types: 7 items on subject matter content, 17 
items with transfer problems, and 14 items on the translation between 
representations. The domain items tested the subjects’ domain knowledge. The 
content of the items was analogous to the content of the learning environment. 
Transfer items tested the ability of the subjects to apply their acquired knowledge in 
new situations: new contexts and relations between variables that were not asked for 
in the learning environment but could be derived from the domain knowledge. 
These items were included because the goal of scientific inquiry learning is not only 
to help subjects acquire domain knowledge but also to enable them to apply their 
knowledge in new situations. The representation items tested the subjects’ ability to 
relate and translate between different representational formats. 
 For each pre-test and post-test item a subject received a score of 1 if the item 
was answered correctly or a score of 0 if the answer was incorrect. The maximum 
score was 38.  
Figure 2-3 shows examples of three test items. 
 The post-test differed slightly from the pre-test in that it contained minor 
changes in the item order and the order of the answer alternatives. Because subjects 
did not know which items were changed, they could not rely on a memory strategy. 
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1.  If you tighten a bolt with an open-end spanner, then where is the moment the largest? 
 
 
 
 
 

   a b c d 
 
a. At the bolt 
b. Between the hand and the bolt 
c. At the hand 
d. At the end of the open-end spanner 

2. What is the direction of the force if the moment is positive? 
 
 
 
 
 
 
 
a  b c d 
 

3. In the picture you see a hand exercising a negative force on an open-end spanner. 
 
 
 
 
 
Which of the following figures is the right reproduction of length, force, and moment? 
a b 
 
 
 
c d 
 
 
 
 
 
 
Figure 2-3  Example of a (1) domain, (2) transfer, and (3) representation item 
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An electronic questionnaire based on Swaak’s S.O.S. scale (Swaak, 1998) was used 
to assess the subjects’ opinions of the learning environment and the domain. The 
questionnaire contained seven questions (Q1-7) that asked subjects to rate topic, 
simulation, and assignment complexity. In particular it asked subjects to score the 
topic as easy, average, or difficult (Q1), whether they found working with the 
simulation easy, average, or difficult (Q2), and whether they found the assignments 
clear (Q3) and useful (Q4) (yes or no). Additionally, subjects were asked if they 
could always find the arm (Q5), force (Q6), and moment (Q7) in the simulation (yes 
or no). The questionnaire was given five times to subjects while they worked with 
the learning environment, after the last assignment of each progression level. 
Subjects had to complete the questionnaire before they could continue. For the first 
two questions in the electronic questionnaire, a three point scale was used. Possible 
answers were: easy, average, or difficult, which were coded as 1, 2, or 3. For the 
other five questions a two point scale was used. Possible answers were: yes or no, 
which were coded as 1 or 2. 
 
Procedure 
The experiments were held at the four participating schools and consisted of three 
experimental sessions: pre-test, working with the learning environment and post-
test. 
 The pre-test session lasted a maximum of 45 minutes. Subjects were informed 
about the experiment and were told that the test measured their prior knowledge of 
force, arm, and moment. Subjects were asked whether they were already familiar 
with the term, ‘moment,’ and got a brief description if they were not. Subjects were 
asked to answer all test items, even if they were unsure about the right answer. 
 The learning environment session took place a week after the pre-test session 
and lasted a maximum of one hour. Subjects were randomly assigned to one of the 
three conditions using their seating placement. Subject did not know beforehand in 
which condition they were going to be placed. At the start of the session, the 
subjects were told that their task was to learn with the learning environment. They 
worked on their own and could question the teacher or experiment leader about 
operating the learning environment. The experiment leader gave a short introduction 
on how to control the learning environment. The electronic questionnaire had to be 
filled in five times while working with the learning environment. The subjects were 
asked to work through all of the progression levels and were asked to do all of the 
assignments. When they were ready, they could ask to do the post-test. 
 The post-test took place directly after the learning environment session. The 
subjects could work a maximum of 45 minutes on this test. The subjects were not 
allowed to use the learning environment during the test and were asked to fill in all 
test items, even if they were unsure about the right answer. 

Results 
Pre-test and post-test 
The overall mean score on the pre-test was 22.15 out of 38 multiple-choice items 
(SD = 3.97). These data indicate that the subjects had some prior knowledge in the 
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domain. The overall mean score on the post-test was 25.00 out of 38 multiple-choice 
items (SD = 4.52). Table 2-3 shows the means and standard deviations of the scores 
on the three different item types in the pre-test and post-test. 
 

Table 2-3  Means and standard deviations of pre-test and post-test scores 

 Pre-test Post-test 

 Mean (SD) % Mean (SD) % 

Domain items (max. 7)  4.94  (1.28) 71  5.63  (1.17) 80 

Transfer items (max. 17)  9.68  (2.10) 57  10.18  (2.27) 60 

Representation items (max. 14)  7.53  (2.10) 54  9.18  (2.39) 66 

Total (max. 38)  22.15  (3.97) 58  25.00  (4.52) 66 

n = 72 
 
A repeated measures ANOVA showed that the overall post-test score of the 72 
subjects was significantly better than the overall pre-test score (F(1,71) = 30.90, p < 
0.01). Repeated measures ANOVAs showed that the post-test score on domain and 
representation items was significantly better than the pre-test scores on these item 
types (F(1,71) = 17.96, p < 0.01 and F(1,71) = 36.34, p < 0.01). Scores on transfer 
post-test items were not better than pre-test scores (F(1,71) = 2.08, p = 0.15). Table 
2-4 shows the means and standard deviations of the pre-test and post-test scores for 
the three different item types per condition. 
 One way ANOVAs showed no significant differences between the experimental 
conditions on pre-test domain scores, transfer scores and representation scores 
(F(2,69) = 0.76, p = 0.47; F(2,69) = 0.922, p = 0.40; F(2,69) = 0.24, p = 0.79). This 
means that subjects in the experimental conditions did not differ in prior knowledge. 
One way ANOVAs showed no significant relations between overall pre-test scores 
and schools and overall pre-test scores and gender (F(3,68) = 0.98, p = 0.41 and 
F(1,70) = 1.91, p = 0.17)4. Therefore, there was no need to correct for these 
variables. 
 One way ANOVAs on the post-test scores showed the following results. A 
significant difference was found between conditions on domain item scores (F(2,69) 
= 3.23, p < 0.05). Tukey HSD post hoc analyses showed that subjects in the I-DL 
condition scored significantly better than the S-NL condition. Differences between 
the other conditions were not significant. No difference was found between 
conditions on transfer item scores (F(2,69) = 0.26, p = 0.78). A trend was found for 
the difference between conditions on representation item scores (F(2,69) = 2.63, p = 
0.08). Tukey HSD post hoc analyses showed that the trend on representation items 
was in favour of the I-DL condition compared to the S-NL condition. 
 

 
4 For all 126 subjects: F(3,122) = 0.46, p = .71 and F(1,124) = 0.35, p = 0.56. 
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Table 2-4  Means (standard deviations) of pre-test and post-test scores per condition 

 Condition 

 S-NL S-DL I-DL 

Pre-test       

Domain items (max. 7)  5.20  (1.14)  4.83  (1.27)  4.79  (1.44) 

Transfer items (max. 17)  9.21  (2.60)  9.88  (1.99)  9.96  (1.57) 

Representation items (max. 14)  7.29  (2.05)  7.59  (2.26)  7.71  (2.05) 

Pre-test total (max. 38)  21.71  (4.36)  22.29  (4.20)  22.46  (3.41) 

Post-test       

Domain items (max. 7)  5.25  (1.39)  5.58  (1.21)  6.08  (0.72) 

Transfer items (max. 17)  10.25  (2.42)  9.92  (2.22)  10.37  (2.24) 

Representation items (max. 14)  8.54  (2.22)  8.95  (2.69)  10.04  (2.05) 

Post-test total (max. 38)  24.04  (4.94)  24.46  (4.51)  26.50  (3.83) 

n = 72 
 
Post-test scores based on complexity 
The learning environment was divided into low and high complexity parts. Based on 
this distinction, we divided the corresponding post-test items into low and high 
complexity categories. Twenty-three post-test items corresponded to the low 
complexity part and 15 items corresponded to the high complexity part. A one way 
ANOVA showed a significant difference between the experimental conditions on 
the overall scores on the post-test items corresponding to the high complexity part of 
the learning environment (F(2,69) = 3.37, p < 0.05). However, Tukey HSD post hoc 
analyses did not show where the differences were found. No difference was found 
on the low complexity part. Comparing the post-test scores between conditions for 
the different item types (domain, transfer and representation) based on complexity, a 
one way ANOVA showed a significant difference between the experimental 
conditions on the high complexity domain item post-test scores (F(2,69) = 1.54, p < 
0.05). Tukey HSD post hoc analyses showed that subjects in the I-DL condition 
scored significantly better than subjects in the S-NL condition. No significant 
differences were found between conditions on the other item types. 
 
Experienced domain complexity 
The experienced domain complexity was measured by the questionnaire question: “I 
find the topic at this moment:  easy, average, or difficult.” The question appeared at 
the end of each of the five progression levels. We calculated a mean score for the 
five answers given (see Table 2-5, question 1). A one way ANOVA showed a 
significant difference between the experimental conditions on experienced domain 
complexity (F(2,69) = 3.45, p < 0.05). Tukey HSD post hoc analyses showed that 
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subjects in the I-DL condition experienced the domain as easier than subjects in the 
S-DL condition. Differences between the other conditions were not significant. 
 
Table 2-5  Means (standard deviations) of questionnaire answers 

 Condition 

 S-NL S-DL I-DL 

Question 1*  1.65  (0.41)  1.78  (0.47)  1.46  (0.38) 

Question 2*  1.55  (0.36)  1.62  (0.47)  1.23  (0.32) 

Question 3**  1.19  (0.23)  1.40  (0.31)  1.09  (0.19) 

Question 4**  1.18  (0.35)  1.38  (0.39)  1.26  (0.33) 

Question 5**  1.13  (0.22)  1.15  (0.23)  1.03  (0.09) 

Question 6**  1.17  (0.27)  1.17  (0.26)  1.03  (0.13) 

Question 7**  1.14  (0.23)  1.20  (0.28)  1.03  (0.13) 

* n = 72  
** n = 69 (3 subjects removed because they answered the question less than 3 times) 
 
Subjects experienced the domain complexity differently throughout the learning 
environment. If subjects scored higher on ‘easy’ the complexity was rated as low. If 
subjects scored higher on ‘average’ and ‘difficult’ the complexity was rated as high. 
Progression levels one and two were experienced as low complexity. Progression 
levels three to five were experienced as high complexity. Based on this experienced 
complexity, we calculated the means of scores from the first and second 
appearances of the questionnaire (domain experienced as low complexity) and the 
means of scores from the third, fourth and fifth appearances of the questionnaire 
(domain experienced as high complexity). A one way ANOVA on these mean 
scores showed a significant difference between the experimental conditions on the 
high complexity part of the learning environment (F(2,69) = 4.11, p < 0.05). Tukey 
HSD post hoc analyses showed that subjects in the I-DL condition experienced the 
domain as easier than subjects in the other conditions in the high complexity part of 
the learning environment. No significant differences were found between the 
conditions in the low complexity part (F(2,69) = 0.83, p = 0.44). 
 
Experienced learning environment complexity 
The experienced learning environment complexity was measured by the 
questionnaire question: “I find working with the simulation at this moment:  easy, 
average, or difficult”. The question appeared at the end of each of the five 
progression levels. We calculated a mean score for the five answers given (see 
Table 2-5, question 2). A one way ANOVA showed a significant difference 
between the experimental conditions in experienced complexity when working with 
the learning environment (F(2,69) = 6.87, p < 0.01). Tukey HSD post hoc analyses 
showed that subjects in the I-DL condition experienced working with the learning 
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environment as easier than subjects in the linked and separate conditions. 
Differences between the other conditions were not significant. 
 A one way ANOVA on these mean scores showed a significant difference 
between the experimental conditions in the high complexity part of the learning 
environment (F(2,69) = 6.80, p < 0.01). Tukey HSD post hoc analyses showed that 
subjects in the I-DL condition experienced working with the learning environment 
as easier than subjects in the other conditions in the high complexity part of the 
learning environment. A trend was found between the conditions in the experienced 
low complexity part (F(2,69) = 2.72, p = 0.07). Tukey HSD post hoc analyses 
showed that subjects in the I-DL condition experienced working with the learning 
environment as easier than subjects in the S-DL condition. This confirms our 
presumption that progression levels 1 and 2 had a low complexity and that levels 3 
to 5 had a high complexity. 
 
Usefulness of assignments and finding variables 
A mean score for each of questions three to seven was calculated for all appearances 
of the questionnaire (see Table 2-5). One way ANOVAs showed a significant 
difference between conditions on questions three (I find the assignments clear: yes, 
no) and seven (I can find the moment in the simulation everywhere: yes, no) 
(F(2,66) = 9.42, p < 0.01; F(2,66) = 3.86, p < 0.05)5. Tukey HSD post hoc analyses 
showed that subjects in the S-DL condition experienced the assignments as less 
clear than subjects in the other conditions and that subjects in the I-DL condition 
could find the moment more frequently than those using the linked version, but not 
more frequently than those using the separate version. No differences were found 
between conditions on questions four (I find the assignments useful: yes, no), 
question five (I can find the arm in the simulation everywhere: yes, no) and question 
six (I can find the force in the simulation everywhere: yes, no). 
 
Subjects’ interaction with the learning environment 
Table 2-6 shows the means and standard deviations of the time subjects spent on 
working with the learning environment, the number of assignments they did and the 
calculated time spent per assignment. 
 A one way ANOVA showed a significant difference between the experimental 
conditions on the average time spent working with the simulation (F(2,69) = 4.23,  
p < 0.05). Tukey HSD post hoc analyses showed that subjects in the S-DL condition 
worked for a significantly shorter duration in the environment than subjects in the 
other conditions. One way ANOVAs on the number of assignments done and time 
per assignment showed no differences between conditions. 
 

 
5 Three subjects were removed from the sample because they answered the questionnaire less than three 
times. 
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Table 2-6  Means (standard deviations) of questionnaire answers 

 Condition  

 S-NL S-DL I-DL Total 

Total time (min) 39.71 (6.71) 33.79 (7.72) 40.17 (10.53) 37.89 (8.85) 

Assignments done (max. 31) 29.71 (2.14) 28.54 (3.64) 30.04 (1.65) 29.43 (2.66) 

Time per assignment (s) 80.34 (12.70) 71.62 (16.38) 80.08 (19.64) 77.34 (16.76) 

 
Because time on task may have affected post-test scores, ANCOVAs were 
performed with time on task as covariate, showing similar results as the reported 
ANOVAs. A significant difference was found between conditions on domain item 
scores (F(2,68) = 4.35, p < 0.05). No difference was found between conditions on 
transfer item scores (F(2,68) = 0.04, p = 0.96). A trend was found for the difference 
between conditions on representation item scores (F(2,68) = 2.58, p = 0.08). 

Discussion 

The aim of this study was to examine ways to support learners in the translation 
between different representations in a simulation-based learning environment. Three 
versions of the same simulation-based learning environment were compared: a 
learning environment with separate, non linked representations (S-NL condition), a 
learning environment with separate, dynamically linked representations (S-DL 
condition) and a learning environment with integrated, dynamically linked 
representations (I-DL condition). We expected that dynamic linking would free the 
subjects from mentally relating the representations and, therefore, we expected to 
find a larger learning effect for the S-DL learning environment compared with the 
S-NL version. We also predicted that the I-DL learning environment would lead to 
the best learning results as long as the integrated representations were not too 
complex for the subjects. 
 Overall, we found that subjects learned from working with the learning 
environment. Post-test scores were significantly better than pre-test scores, but only 
on domain and representation items. We found that dynamic linking alone (S-DL 
condition) did not lead to better learning outcomes than non-linking. We found that 
subjects in the I-DL condition had the best scores on post-test domain items. They 
scored significantly better than subjects in the S-NL condition, but not better than 
those in the S-DL condition. A trend was found for representation items. The trend 
was again in favour of the I-DL condition, but again only in comparison with the S-
NL condition. 
 As expected, complexity of the learning environment interacted with the effects 
of the experimental conditions. The differences seen on the domain items were only 
found on items that corresponded to the high complexity part of the learning 
environment, but not on the items that corresponded to the low complexity part. The 
contingency that the integrated representation could become too complex when 
more variables were introduced was not supported by our data. To the contrary, 
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subjects in the I-DL condition experienced level 4 of the learning environment, 
where a second force was introduced, as easier than subjects in the other conditions. 
It looks like finding the relations between representations in the separate and linked 
conditions was more complex than the complexity of the integrated representation. 
In the S-NL and S-DL conditions, the subjects had to relate nine variables that were 
presented separately. Linking these variables helped the subjects to find their 
relations, but not enough to experience this as less difficult than the I-DL condition. 
 The fact that we did not find better results for dynamic linking in comparison 
with non-linking seems in contrast with other studies reporting positive effects of 
linking representations (e.g., Kozma, 2003; Kozma et al., 1996; Tsui & Treagust, 
2003; Wu, Krajcik, & Soloway, 2001). There are, however, two issues that make 
these studies different from ours. First, in our study the S-DL condition differed 
from the S-NL condition only by the presence of dynamic linking. Apart from 
dynamic linking we used colour coding to relate representations, but this colour 
coding was present in both the S-DL and S-NL conditions. Other studies (e.g., 
Kozma et al., 1996) combined different ways to relate representations, including 
dynamic linking, and did not examine the effect of dynamic linking alone. Taken 
together, these results may suggest that in our case colour coding may have been 
sufficient and, because of that, the dynamic linking had no additional effect. 
 A second aspect of our learning environments that could have helped subjects to 
relate and translate representations could have been the instructional support in our 
environments. Instructional support, such as the assignments that we provided the 
subjects with, may highlight the correspondence between related representations 
(see e.g., Ardac & Akaygun, 2004). The assignments in our learning environments 
were the same for all conditions. 
 Where dynamic linking did not lead to better learning effects, integration plus 
linking did. We found significant differences on domain items, which indicates that 
the learners learn the domain better if the representations are integrated (and linked). 
This is in accordance with Chandler and Sweller (1991), who found that integrating 
instruction led to better learning results than separate instruction, as long as the 
materials chosen were unintelligible without mental integration. The trend found on 
representation items may indicate that integrating representations supports learners 
in relating different representations. 
 The results on the transfer items were not as expected. An important motivation 
to use multiple representations is that they should encourage learners to construct a 
deeper knowledge of a domain (e.g., Ainsworth, 1999; Petre, Blackwell, & Green, 
1998). Petre et al. (1998) asserted that having to make the mental transference 
between representations (and possibly between paradigms) forces reflection beyond 
the boundaries and details of the first representation and an anticipation of 
correspondences in the second. The deeper level of cognitive processing can reveal 
glitches that might otherwise have been missed. We expected that by using multiple 
representations, subjects could transfer their knowledge of the domain presented in 
the learning environment to other, comparable, situations. However, we did not find 
significant differences on transfer items between the pre-test and post-test. This 
could possibly be explained by the fact that subjects worked with the learning 
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environment for a short period of time (the average learning time was 38 minutes) 
and therefore did not explore the domain deeply. Subjects, therefore, did not obtain 
enough insight in the relations between the domain variables to be able to transfer 
their knowledge to new situations. A second aspect could be that in the learning 
environments the domain was presented in specific contexts. Representation 2 (see 
Figure 2-2) showed the physics system under study; an open-end spanner with a 
hand tightening a bold or a hoisting crane. It showed the domain in a way it would 
appear in a real-world situation. This representation was meant to constrain the 
interpretation of the other representations. A drawback could have been that subjects 
related the domain to the presented contexts too much and were therefore not able to 
transfer their new knowledge to other contexts. 
 Although their pre-tests and post-tests contained transfer items, Wu et al. 
(2001), Ainsworth et al. (1997) and van Labeke and Ainsworth (2002) did not look 
explicitly for learning effects of (dynamically) linked multiple representations on 
these items. Tsui and Treagust (2003), doing research on genetics reasoning, found 
that some but not all subjects scored better on transfer items. When analysing their 
interviews, they found that the subjects who did not improve showed no mindful 
interaction with the multiple representations in their learning environment. 
According to Tsui and Treagust, learners’ mindfulness in interacting with multiple 
representations is a theme which appeared to be crucial in the development of 
genetics reasoning and in the transfer of that reasoning to new problem situations. 
 
Like, for example, Petre et al. (1998), we believe that having to make mental 
translations between representations is a good way to acquire deeper knowledge in a 
domain. It is worthwhile to further investigate the effects of different types of 
support when offering learners multiple representations. Integrating representations 
looks promising, but, as Lowe (2004) also asserts, additional support is probably 
needed to let learners have mindful interaction with the representations. 
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Progression in multiple representations 
 
Abstract - Relating multiple representations and translating between them is 
important for acquiring deeper knowledge in a domain. To relate representations, 
learners must mentally search for similarities and differences. To translate between 
representations, learners need to interpret the effects that changes in one 
representation have on corresponding representations. The question is how the 
design of representations influences the processes of relation and translation. In this 
study we examined the effect of sequencing dynamic representations on learning 
outcomes. Two versions of the same simulation-based learning environment, that of 
the physics topic of moments, were compared: a learning environment providing the 
representations step-by-step (experimental condition) and a learning environment 
providing all representations at once (control condition). The subjects were 88 
students from secondary vocational education (aged 15 to 21). Overall, we found 
that the subjects learned from working with the learning environment; the post-test 
scores on the domain and transfer items were significantly better than the pre-test 
scores. Despite our expectations, no differences were found between the two 
experimental conditions. The subjects learned equally well regardless of the way in 
which the representations were presented. Also, the extent to which the subjects 
experienced complexity of both the topic and the learning environment did not 
differ between the experimental conditions. 



Chapter 3 

62 

Introduction 

Many learning environments contain multiple representations such as: text, static 
pictures, animations, graphs, tables and formulas. By using multiple representations, 
learners are assumed to acquire deeper knowledge in a domain and therefore to be 
able to use their knowledge in other learning situations. Mental transference 
between representations forces learners to reflect beyond the boundaries and details 
of the first representation to anticipate correspondences in the second (Petre, 
Blackwell, & Green, 1998). This is believed to lead to a deeper level of cognitive 
processing. In addition to this, multiple representations can comprise different roles. 
First, a familiar representation can support understanding and reasoning with 
unfamiliar ones (the constraining function; Ainsworth (1999, 2006)). Second, 
representations can complement each other by containing complementary 
information or by supporting different complementary processes (the 
complementing function; Ainsworth (1999, 2006)). 
 To be able to learn from multiple representations, learners must: (1) understand 
the syntax of each representation, (2) understand which parts of the domain are 
represented, (3) relate the representations to each other if the representations are 
(partially) redundant and (4) translate between the representations, that is, interpret 
similarities and differences of corresponding features of two or more representations 
(van der Meij & de Jong, 2006). Several studies (e.g., Kozma, 2003; Tabachneck, 
Leonardo, & Simon, 1994) have shown that the last two tasks – relating and 
translating between representations – are difficult for learners. This is problematic, 
because these cognitive processes are important for deeper learning to occur. 
Learners find most difficulty in translating between representations with different 
representational codes (for example, pictorial, arithmetical or textual) (Ainsworth, 
1999). 
 This leads to an interesting question for instructional designers: can the way in 
which multiple representations are presented facilitate the cognitive processes of 
relating and translating? 
 
Supporting the relating and translating process 
An important requirement for learning with multiple representations in simulation-
based learning environments is how to support learners in the process of relating 
and translating. Both integration and dynamic linking of representations (Ainsworth 
& Peevers, 2003; Chandler & Sweller, 1991; Mayer & Moreno, 1998; van der Meij 
& de Jong, 2006) are of proven value. However, both also have their limitations and 
drawbacks. 
 
Integrating 
Physical integration of representations can make relations between representations 
explicit for the learner (e.g., Chandler & Sweller, 1991). Integrated representations 
appear to be one representation showing different aspects of the domain. By 
integrating representations, relations between them are shown directly to the learner. 
Having all related elements in the same place makes it easier to interpret the 
similarities and differences between corresponding features and therefore 
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integration also supports the translation process. Several studies conclude that 
learning with integrated representations leads to better knowledge compared with 
learning with non-integrated representations (Ainsworth & Peevers, 2003; Bodemer, 
Ploetzner, Feuerlein, & Spada, 2004; Chandler & Sweller, 1991; Mayer & Moreno, 
1998). However, integration does not always lead to better learning outcomes. 
Bodemer et al. (2004) found that students working with integrated representations 
only learned more compared with students working with non-integrated ones when 
they had to actively integrate the representations themselves. Moreover, Bodemer 
and Faust (2006) only found positive effects of active integration when students 
were able to integrate the representations correctly. Chandler and Sweller (1991) 
only found positive effects of integration when individual units could not be 
understood separately. 
 
Dynamic linking 
For simulation-based learning environments with dynamic representations 
(representations that change over time or change according to input of the learner), 
dynamic linking can be provided to make the relations between different 
representations explicit for the learner (Ainsworth, 1999). With dynamically linked 
representations, actions performed on one representation are automatically shown in 
all other representations. If a learner, for example, changes the value of a force in a 
numerical representation, the corresponding representation of the force in an 
animation is updated automatically. It is expected that dynamic linking decreases 
cognitive load by freeing learners from having to establish the relationships between 
the representations (e.g., Kaput, 1989; Scaife & Rogers, 1996). However, a potential 
problem with dynamic linking might be learners’ selective attention (see Lowe, 
1999). With multiple dynamically changing representations, learners need to attend 
to and relate changes that occur simultaneously in different regions of various 
representations. Another problem might be that dynamic linking allows a learner to 
be too passive in the relating and translating processes (Ainsworth, 1999). Dynamic 
linking may discourage mental relation and translation, hindering the learner from 
constructing the required understanding. Despite the potential problems, dynamic 
linking seems to be a promising approach to support learning with multiple 
representations. 
 
Integrating plus dynamic linking 
In a previous study comparing three simulation-based learning environments, we 
extended known research on integration by examining its role using dynamic 
representations instead of static representations (van der Meij & de Jong, 2006). In 
three experimental conditions, the same learning environment on the physics topic 
of moments was presented using separate, non-linked representations, using 
separate, dynamically linked representations and using integrated, dynamically 
linked representations. Furthermore, we examined the role of the complexity of the 
domain and the learning environment. The learning environment was divided into a 
low complexity and a high complexity part. We found better learning results on 
domain knowledge when the representations were integrated plus dynamically 
linked. In addition, we found a trend between experimental conditions on so-called 
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representation items – where subjects had to relate or translate between 
representations – in favour of the integrated plus dynamically linked condition. We 
did not find differences between conditions on test items measuring transfer. The 
learning environments we used can be characterized as guided inquiry learning 
environments (e.g., Mayer, 2004; van Joolingen & de Jong, 2003). In inquiry 
learning environments, learners are engaged in active exploration of the learning 
materials in order to understand the concepts of a domain. It is expected that 
learners who explore a domain themselves acquire deeper knowledge of that 
domain. However, they only gain from the inquiry process if it is adequately guided 
by, for example, assignments and explanations. 
 
Representation progression 
Another way to support learners in simulation-based learning environments is to 
provide them with model progression (White & Frederiksen, 1990). With model 
progression the learning environment can by sequenced from simple to complex. 
This study was a first attempt to relate model progression to representational 
progression. Based on the model progression used, we increased the number of 
representations gradually. As a result, the number of relations and possible 
translations increased likewise. Starting with a few relations and possible 
translations and then introducing more relations and possible translations step-by-
step might support learners in relating the representations and translating between 
them. In addition, sequencing the representations might be a solution to the selective 
attention problem mentioned earlier. 
 
Research questions 
The goal of this study was to determine if sequencing dynamic representations has 
an effect on learning outcomes. This was examined in a simulation-based learning 
environment with dynamic representations. 
 
The context of the study was a guided inquiry simulation-based learning 
environment called Moments. Subjects studied the physics topic of moments by 
means of multiple representations of an open-end spanner tightening a bolt. Two 
versions of the same simulation-based learning environment were compared: a 
learning environment providing the learners with representations introduced step-
by-step (experimental condition – R-Step) and a learning environment presenting all 
the representations at once (control condition – R-Once). 

Method 

The primary group in this study were subjects without prior knowledge of the 
domain. These subjects were at the start of their first year of secondary vocational 
education. Since our materials were ready three months before the start of the first 
semester, we had the opportunity to carry out our study also with two groups of 
students at the end of their first year. We took this opportunity to explore how these 
students, who had prior knowledge of the domain, would perform on our tests and 
would work with our learning environments. 
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Subjects 
Primary group - subjects without prior knowledge in the domain 
The subjects were students at the start of their first year of secondary vocational 
education. They were between 15 and 21 years old and took either a course in 
mechanical engineering (classes 1 and 2) or architecture (classes 3 and 4). Subjects 
came from two schools and from one class at school one and three classes at school 
two. A between subjects design was used, in which participants were randomly 
assigned to one of the two experimental conditions. Ninety-five students started the 
experiment; two subjects were not representative because they were repeaters, two 
subjects had no Internet access and as a result were not able to do the pre-test and 
post-test, subject identifications of two subjects were probably mixed up and one 
subject was removed from the analyses as an outlier (score of 1 on the pre-test); 
resulting in the analyses being performed with 88 subjects. Table 3-1 shows how the 
subjects were distributed across the conditions. 
 
Table 3-1  Distribution of subjects without prior knowledge across conditions 

  Condition  

Class School R-Step (m/f) R-Once (m/f) Total (m/f) 

1 1 11 (11/0) 12 (12/0) 23 (23/0) 

2 2 7 (7/0) 8 (8/0) 15 (15/0) 

3 2 13 (13/0) 13 (13/0) 26 (26/0) 

4 2 14 (13/1) 10 (10/0) 24 (23/1) 

Total  45 (44/1) 43 (43/0) 88 (87/1) 

m = male, f = female 
 

Exploratory group - subjects with prior knowledge in the domain 
The subjects were students at the end of their first year of secondary vocational 
education. They were between 16 and 19 years old and took either a course in 
mechanical engineering (class 1) or architecture (class 2). Subjects came from two 
schools and from one class at each school. A between subjects design was used, in 
which participants were randomly assigned to one of the two experimental 
conditions. Thirty-five students started the experiment; two subjects were not 
representative because they were in orientation for the course and the post-test 
results of one student were lost, resulting in analyses being done with 32 subjects. 
Table 3-2 shows how the subjects were distributed across the conditions. 
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Table 3-2  Distribution of subjects with prior knowledge across conditions 

  Condition  

Class School R-Step (m/f) R-Once (m/f) Total (m/f) 

1 1 9 (9/0) 8 (8/0) 17 (17/0) 

2 2 6 (5/1) 9 (8/1) 15 (13/2) 

Total  15 (14/1) 17 (16/1) 32 (30/2) 

m = male, f = female 
 
Materials 

Learning environment 
Subjects worked with the Moments learning environment that was built in the 
SimQuest authoring environment (de Jong, van Joolingen, Veermans, & van der 
Meij, 2005; van Joolingen & de Jong, 2003). Subjects studied the physics topic of 
moments in the context of mechanical engineering. The learning environment is 
based on guided inquiry learning (de Jong & van Joolingen, 1998). The learner has 
to engage in inquiry activities in order to learn about the properties of the simulation 
model and is guided in the inquiry process by ‘cognitive tools’ such as model 
progression, assignments and explanations. Learners explore the simulation model 
by manipulating values of the input variables and observing the behaviour of output 
variables. By understanding the relations between the variables, it is expected that 
learners acquire a deep understanding of the domain and are able to transfer their 
knowledge to similar problems in other situations. 
 
The learning environment consists of an introduction and 16 assignments. The 
introduction gives an overview of ‘moments’ by giving everyday examples in which 
moments play a role. After this introduction, learners explore specific aspects of the 
domain by choosing an assignment from the menu. When opening an assignment, a 
corresponding simulation interface opens. Each assignment starts with a short 
description of an aspect of the domain, asks the learner to explore this aspect and 
asks the learner to answer a question about it. After answering the question, the 
learner gets feedback in the form of the right answer with an explanation. With 
multiple choice questions, the learner receives a hint when the first attempt is 
wrong. If the second attempt is wrong as well, the right answer is given with an 
explanation. 
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Figure 3-1  Assignment with simulation interface showing all representation types 

 
The learner can perform experiments in the simulation interface (left screen in 
Figure 3-1) supported by assignments (right screen in Figure 3-1). The learner can 
manipulate the force and length input variables and can observe the moment output 
variable. The assignments stimulate learners to explore the relation between the 
variables in the simulation model. The types of representations used are: (1) a 
concrete representation (animation of an open-end spanner), (2) a diagrammatic 
representation (an abstract representation of the variables playing a role in the 
concrete situation), (3) a numerical representation (showing the values of the 
variables involved), (4) a dynamically changing equation and (5) a dynamically 
changing table (showing one row that is dynamically updated when variables are 
manipulated by the learner). Table 3-3 gives an overview of the instructional 
support with corresponding representations. The assignments are the same for both 
experimental conditions. 
 Representations 1, 2 and 3 (see Figure 3-1) are representations usually found in 
textbooks. These representations are the basic types presented to learners in this 
domain. They support learners in getting insight into the domain from different 
perspectives. We were able to integrate these representations because of their 
formats. The concrete and diagrammatic representations could easily be integrated 
because they share the same spatial properties. The numerical representations could 
be placed near the objects in the other two representations. The concrete 
representation (1) provides the learner with a context for the simulated task. This 
representation links the learning material to a real-life experience. The choice of an 
open-end spanner in this learning environment was made because most of the 
students in the target group have experience in using this tool. The diagrammatic  
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Table 3-3  Instructional support with corresponding representations 

 Representations 

Instructional support (text) R-Step R-Once 

00. Introduction Text and pictures Text and pictures 

01. Explanation what is moment 1 1, 2, 3, 4, 5 

02. Fixed clamp 1, 2 (clamp) ,, 

03. Moment caused by place hand 1, 2 (clamp and M) ,, 

04. Introduction arm 1, 2 (clamp, M and a) ,, 

05. Introduction force 1, 2 (clamp, M, a and F) ,, 

06. Orientation moment by force ,, ,, 

07. Introduction angle (90°) 1, 2 (clamp, M, a, F and α) ,, 

08. Introduction distance 1, 2 ,, 

09. Magnitude moment 1, 2, 3 ,, 

10. Variables that play a role 1, 2, 3, 4 ,, 

11. Relation force and moment 1, 2, 3, 4, 5 ,, 

12. Introduction Experiment table ,, ,, 

13. Double the force ,, ,, 

14. Relation a and M ,, ,, 

15. Combination M, a and F ,, ,, 

16. Influence angle on moment ,, ,, 

Representations: 

1. concrete representation (animation of open-end spanner) 

2. diagrammatic representation (an abstract representation of the variables playing a role in 
the concrete situation) 

3. numerical representation (showing the values of the variables involved) 

4. dynamically changing equation 

5. dynamically changing table (showing one row that is dynamically updated when variables 
are manipulated by the learner) 

 
 
representation (2) helps learners to go beyond the concrete situation to a more 
abstract understanding of the relation between the variables involved. By providing 
this type of representation, it is expected that learners can use their acquired 
understanding in new situations. Both the concrete and diagrammatic 
representations present the domain in a qualitative way. The numerical 
representation (3) gives a quantitative view of the variables involved. The 
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contribution of this representation is showing the values of the variables to support 
the numerical relations between the variables. The dynamically changing equation 
(4) represents the domain as a formula with dynamically changing numerical values. 
It shows the actual values of the variables together with their relations in a direct 
way. The dynamically changing table (5) also supports the understanding of 
numerical relations. It contains one row representing the actual values of all 
variables involved. The dynamically changing equation and table could not be 
integrated with representations 1 to 3 because their forms are too divergent. We 
chose to dynamically link all the representations. 
 In addition to the table, an experiment table is introduced in assignment 12 (see 
Figure 3-2). This table has the same format as representation number 5 (the 
dynamically changing table), except that learners can save, compare, structure, 
replay and delete their experiments. Experiments are saved by clicking a save 
button; this adds a row to the table showing the variables’ values in a static fashion. 
Learners can replay an experiment by selecting a table row and clicking a start 
button. All representations then represent the values of the table row. 
 
 
 
 
 
 
 
 
 
Figure 3-2  Experiment table 

 
Learners can manipulate the input variables by using the provided sliders. If a 
learner manipulates a slider, the corresponding changes are shown in the 
representations in real time. For example, if a learner moves the force-slider, the 
element representing force is updated continuously and immediately, as is the 
change in moment. Learners can compare situations by moving the slider back and 
forth between different states of the simulation. They can also compare situations 
when they have access to the experiment table (see Figure 3-2). 
 In the experimental condition, the representations are introduced one by one; 
starting with the concrete representation, followed by the diagrammatic, then the 
numerical and ending with the table (Figure 3-3 shows the first step; Figure 3-1 
showed the final step). 
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Figure 3-3  First representation progression step (experimental condition) 

 
Tests and questionnaire 
Subjects’ prior domain knowledge was assessed using an online pre-test. This was 
administered directly before working with the learning environment. An online 
post-test was administered directly after working with the learning environment.  
 The pre-test consisted of 20 items, both multiple-choice and open answer items; 
10 items testing domain knowledge and 10 items testing transfer knowledge. The 
post-test consisted of 40 items, both multiple-choice and open answer items; 10 
domain items, 10 transfer items, 10 items testing the ability to relate representations 
and 10 items testing the ability to translate between representations. The domain 
items tested whether the subjects were able to reproduce the content they were 
explicitly asked to explore in the learning environment. The transfer items tested the 
ability of the subjects to apply their acquired knowledge in new situations. These 
were new contexts and/or relations between variables that were not directly asked 
for in the learning environment, but that could be derived from the domain 
knowledge. The relate items tested whether the subjects were able to relate different 
representations. These items asked the subjects to relate similar variables of 
representations with different representational codes. To be able to answer translate 
items correctly, the subjects had to make a mental translation from manipulations on 
one representation to the effects in another representation having a different 
representational code. Figure 3-4 shows examples of the test items. 
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Figure 3-4  Examples of (1) domain, (2) transfer, (3) relate and (4) translate items  
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The domain and transfer items corresponded to the post-test items. The post-test 
items differed slightly from the pre-test by changing the item and alternative answer 
orders. Since subjects did not know which items had been changed, they could not 
rely on a memory strategy. 
 For each pre-test and post-test item, a subject received a score of 1 if the answer 
was correct or a score of 0 if the answer was incorrect. The maximum scores for the 
pre-test and post-test were 20 and 40 respectively. 
 
An electronic questionnaire based on Swaak’s S.O.S. scale (Swaak, 1998) was used 
to assess the subjects’ opinions of the complexity of the learning environment and 
the domain. The questionnaire asked subjects to score the topic as easy, average, or 
difficult (Q1) and whether they found working with the simulation easy, average, or 
difficult (Q2). The questionnaire was given three times to subjects while they 
worked with the learning environment: after assignments 6, 11 and 16. Subjects had 
to complete the questionnaire before they could continue. 
 
Procedure 
The experiments were held at the participating schools and consisted of three 
experimental sessions: pre-test, working with the learning environment and post-
test. Subjects were randomly assigned to one of the two conditions using their 
seating placement. 
 Before the pre-test participants were informed about the experiment and were 
told the test measured their prior knowledge of force, arm and moment. If necessary, 
a brief description was given. Participants were asked to fill in all test items, even if 
they were unsure about the right answer. Subjects had a maximum of 45 minutes to 
complete the pre-test. 
 The learning environment session took place approximately 45 minutes after the 
start of the pre-test session, so that all subjects had at least a 10-minute break 
between the sessions. Subjects could work in the learning environment at their own 
pace, but not longer than an hour. They worked on their own and could question the 
teacher or experiment leader on operating the learning environment. Subjects were 
asked to do all 16 assignments. When ready, the subjects could ask to do the post-
test. 
 The post-test took place directly after the learning environment session. The 
participants could work a maximum of 45 minutes on this test. The participants were 
not allowed to use the learning environment during the test and were asked to fill in 
all test items, even if they were unsure about the right answer. 
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Results 
Pre-test and post-test 
Primary group - subjects without prior knowledge in the domain 
The overall mean score on the pre-test was 9.65 out of 20 test items (SD = 2.88). 
These data indicate the subjects had relatively little prior knowledge in the domain. 
The overall mean score on the post-test domain plus transfer items was 11.64 out of 
20 test items (SD = 3.10). Table 3-4 shows the means and standard deviations of the 
scores on the item categories in the pre-test and post-test. 
 
Table 3-4  Means and standard deviations of pre-test and post-test scores 

 Pre-test Post-tests 

 Mean (SD) % Mean (SD) % 

Domain items (max. 10)  5.70  (1.62) 57  6.99  (1.68) 70 

Transfer items (max. 10)  3.96  (1.78) 40  4.65  (1.91) 47 

       
Total (max. 20)  9.95  (2.88) 48 11.64  (3.10) 58 

       
Relate items (max. 10)     7.82  (1.50) 78 

Translate items (max. 10)     2.95  (1.39) 30 

n = 88 
 
A repeated measures ANOVA showed that the overall combined domain and 
transfer post-test score of the 88 subjects was significantly better than the overall 
pre-test scores (F(1,87) = 60.68, p < 0.01). Repeated measures ANOVAs for each 
item category showed that the post-test scores on domain and transfer items were 
significantly better than the pre-test scores on these item types (F(1,87) = 67.51,  
p < 0.01 and F(1,87) = 15.54, p < 0.01). Table 3-5 shows the means and standard 
deviations of the pre-test and post-test scores for the four item categories for each 
condition. 
 One-way ANOVAs showed no significant differences between the experimental 
conditions on pre-test domain scores and transfer scores (F(1,86) = 2.05, p = 0.16; 
F(1,86) = 0.05, p = 0.82). This means that subjects in the experimental conditions 
did not differ in prior knowledge. 
 One-way ANOVAs showed no significant differences between the experimental 
conditions on post-test domain scores, transfer scores, relate scores and translate 
scores (F(1,86) = 0.33, p = 0.57; F(1,86) = 0.64, p = 0.43; F(1,86) = 0.94, p = 0.33; 
F(1,86) = 0.09, p = 0.77). 
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Table 3-5  Means and standard deviations of pre-test and post-test scores 

 R-Step R-Once 

 Mean (SD) Mean (SD) 

Pre-test     

Domain items (max. 10)  5.93  (1.76)  5.44  (1.44) 

Transfer items (max. 10)  3.91  (1.73)  4.00  (1.85) 

Pre-test total (max. 20)  9.84  (2.97)  9.44  (2.80) 

Post-test     

Domain items (max. 10)  7.09  (1.62)  6.88  (1.75) 

Transfer items (max. 10)  4.49  (1.73)  4.81  (2.09) 

Relate items (max. 10)  7.67  (1.49)  7.98  (1.50) 

Translate items (max. 10)  2.91  (1.47)  3.00  (1.31) 

Post-test total (max. 40)  22.16  (4.01)  22.67  (5.29) 

n = 88 
 

Exploratory group - subjects with prior knowledge in the domain 
This section reports the results for the exploratory group. Although the learning 
environment was designed for learners without prior knowledge in the domain, this 
group was included because we had the opportunity to carry out our study with two 
groups with prior knowledge in the domain and we were eager to see how these 
students would perform on the tests and work with the learning environment. 
 The overall mean score on the pre-test was 12.16 out of 20 test items (SD = 
2.99). These data indicate the subjects had moderate prior knowledge in the domain. 
The overall mean score on the post-test domain plus transfer items was 13.31 out of 
20 test items (SD = 2.81). Table 3-6 shows the means and standard deviations of the 
scores on the item categories in the pre-test and post-test. 
 
Table 3-6  Means and standard deviations of pre-test and post-test scores 

 Pre-test Post-test 

 Mean (SD) % Mean (SD) % 

Domain items (max. 10)  6.97 (1.51) 70  7.50 (1.44) 75 

Transfer items (max. 10)  5.19 (1.94) 52  5.81 (2.07) 58 

       
Total (max. 20) 12.16 (2.99) 61 13.31 (2.81) 67 

       
Relate items (max. 10)     8.63 (1.21) 86 

Translate items (max. 10)     3.78 (1.98) 38 

n = 32 
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A repeated measures ANOVA showed that the overall combined domain and 
transfer post-test score of the 32 subjects was significantly better than the overall 
pre-test scores (F(1,31) = 9.07, p < 0.01). Repeated measures ANOVAs for each 
item category showed a trend for pre-test to post-test scores on domain items 
(F(1,31) = 3.89, p = 0.06). Post-test scores on transfer items were significantly 
better than pre-test scores on these item types (F(1,31) = 7.52, p < 0.05). Table 3-7 
shows the means and standard deviations of the pre-test and post-test scores for the 
four item categories for each condition. 
 
Table 3-7  Means and standard deviations of pre-test and post-test scores 

 R-Step R-Once 

 Mean (SD) Mean (SD) 

Pre-test     

Domain items (max. 10)  7.33  (1.63)  6.65  (1.37) 

Transfer items (max. 10)  5.53  (1.51)  4.88  (2.26) 

Pre-test total (max. 20)  12.87  (2.70)  11.53  (3.17) 

Post-test     

Domain items (max. 10)  7.53  (1.30)  7.47  (1.59) 

Transfer items (max. 10)  5.73  (1.53)  5.88  (2.50) 

Relate items (max. 10)  8.60  (1.12)  8.65  (1.32) 

Translate items (max. 10)  3.73  (1.87)  3.82  (2.13) 

Post-test total (max. 40)  25.60  (4.42)  25.82  (5.88) 

n = 32 
 
One-way ANOVAs showed no significant differences between the experimental 
conditions on pre-test domain scores and transfer scores (F(1,30) = 1.68, p = 0.21; 
F(1,30) = 0.90, p = 0.35). This means that subjects in the experimental conditions 
did not differ in prior knowledge. 
 One-way ANOVAs showed no significant differences between the experimental 
conditions on post-test domain scores, transfer scores, relate scores and translate 
scores (F(1,30) = 0.02, p = 0.90; F(1,30) = 0.04, p = 0.84; F(1,30) = 0.01, p = 0.92; 
F(1,30) = 0.02, p = 0.90). 
 
Comparison of subjects with and without prior knowledge 
A one-way ANOVA showed that subjects with prior knowledge scored significantly 
higher on the pre-test than subjects without prior knowledge (F(1,118) = 17.49, p < 
0.01). The same effect was found for the post-test (F(1,118) = 11.17, p < 0.01). 
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Experienced domain complexity 
The experienced domain complexity was measured by the questionnaire question: “I 
find the topic at this moment:  easy, average, or difficult.” The question appeared 
three times during working with the learning environment. One-way ANOVAs for 
all three appearances showed no significant differences between the experimental 
conditions on experienced domain complexity for subjects with prior knowledge 
and subjects without prior knowledge. 
 
Experienced learning environment complexity 
The experienced learning environment complexity was measured by the 
questionnaire question: “I find working with the simulation at this moment:  easy, 
average, or difficult”. The question appeared three times during working with the 
learning environment. One-way ANOVAs for all three appearances showed no 
significant differences between the experimental conditions on experienced learning 
environment complexity for subjects with prior knowledge and subjects without 
prior knowledge. 

Discussion 

The aim of this study was to determine if sequencing dynamic representations has 
an effect on learning outcomes. This was examined in a simulation-based learning 
environment on the physics topic of moments. 
 Overall, we found that subjects learned from working with the learning 
environment; post-test scores on the domain and transfer items were significantly 
better than pre-test scores. This was the case for both the subjects with and without 
prior knowledge in the domain. It was interesting to find that the pre-test scores of 
subjects with prior knowledge were higher than the post-test scores of the subjects 
without prior knowledge and that their knowledge still improved significantly. This 
may indicate that the subjects without prior knowledge might have scored higher on 
the post-test had they had more time to work with the learning environments. 
 In contrast with our expectations, no differences were found between 
experimental conditions. So, subjects learned equally well regardless of the way the 
representations were presented. Also, subjects’ complexity experience of both the 
topic and learning environment did not differ between the experimental conditions. 
 This leaves us with the question: Why did sequencing representations not 
support learners in relating and translating between representations? In search of an 
answer to this question we analysed the log files to get insight into the way learners 
worked through the learning environments. The log files showed that almost all 
subjects worked through the learning environment in the order in which we 
presented the assignments. This was not surprising since these students are used to 
doing this and we asked them to do all assignments. This was also the preferred 
order, since the assignments were sequenced from simple to complex, introducing 
variables and relations between variables step-by-step. The assignments were the 
same in both conditions and followed the step-by-step introduction of the R-Step 
condition. The assignments directed the subjects’ attention to the newly introduced 
representations and variables in the R-Step condition. It looks like subjects’ 
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attention in the R-Once condition also seems to have been directed to these 
representations and variables. Answers the subjects gave on the assignments and the 
experiments they saved in the experiment table showed that all subjects did only 
experiments we explicitly asked them to do. Taking these findings together, our 
conclusion is that the instructional support provided by the assignments played a 
very important role in this study. The instructional support had a great impact on 
how learners worked with the learning environment and may have overshadowed 
the possible effect of sequencing. 
 Although we tried to encourage the subjects to explore the simulation and 
reflect on their actions by asking them to prove their answers by experiments done 
and to provide an explanation for the answers they gave, the log files showed that 
learners did not explore the simulation for other features than those explicitly 
indicated in the assignments and their reflections were very brief. In short, the 
instructions guided the subjects through the learning environment with little else 
being attended to. As a result, the subjects seem not to have focused on relating 
representations and translating between them. 
 Despite our attempt to engage the subjects in relating representations and 
translating between them, they do not seem to do so if they are not explicitly asked 
to. We believe the intervening effect of instructional support in the present study can 
help us to improve the effects of providing multiple representations in the future. In 
a follow-up study we will use the current results to adapt the instruction. Instead of 
focusing on domain knowledge in the instruction, we are going to try to encourage 
learners to relate and translate between representations by explicitly asking them to 
do so. We believe that sequencing the representations can give additional support. 
Sequencing the representations avoids overloading the learners by directing their 
attention only to those representations they are asked to relate and translate between. 
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Prompts to translate between representations 
 
Abstract - Learners who learn with multimedia learning environments are almost 
always confronted with multiple representations. The processing of these 
representations is an important part of the learning activity. Therefore, the design of 
these learning environments should support the learner in adequately processing the 
representations. In this study we examined the effect of presenting learners with 
sequences of multiple representations combined with explicit instruction, at each 
step of the sequence, to relate and translate between the different representations. 
Two versions of the same simulation-based inquiry learning environment on the 
physics topic of moments were compared. One learning environment provided all 
representations at once and instructional support focused solely on relations between 
the domain variables (R-Once condition). The second learning environment 
provided learners with representations step-by-step and with instructional support 
that focused additionally on relating representations and translating between them 
(R-Step condition). Subjects were 86 students from secondary vocational education 
and 125 students from pre-university education. Overall, the R-Step condition 
showed the best learning results. Subjects in the R-Step condition performed better 
on post-test items measuring domain knowledge. A trend in favour of the R-Step 
condition was found on post-test items asking subjects to relate two different 
representations. No differences were found between the experimental conditions on 
post-test transfer items and post-test items asking subjects to translate between two 
different representations. 
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Introduction 

Computer-based learning environments often combine several representations such 
as text, static pictures, animations, graphs, tables and formulas. To be able to learn 
from multiple representations, learners must perform four tasks in sequence: (1) 
understand the syntax of each representation, (2) understand which parts of the 
domain are represented, (3) relate the representations to each other if the 
representations are (partially) redundant and (4) translate between the 
representations (van der Meij & de Jong, 2006a; chapter 2).  
 Tasks three and four are unique for learning with multiple representations and 
we believe that these processes are the main reasons for using multiple 
representations. When learners are capable of relating and translating between 
representations they are much more likely to acquire deeper understanding of the 
domain. A potential explanation for this is that these processes of relating and 
translating force learners to reflect beyond the boundaries and details of a first 
representation to anticipate correspondences in a second one (Petre, Blackwell, & 
Green, 1998). However, to be able to relate and translate between representations, 
learners first must fulfil tasks one and two. 
 Understanding the syntax means that learners must comprehend the format 
(e.g., labels, axes and line shapes) and operators (e.g., plus, minus and divide) of the 
representation. In a multi-representational learning environment learners must at 
least have experience with one of the representations. If they don’t have this 
experience, the format and operators of at least one representation must be taught. 
Not knowing the format and operators of (the) other representations should not be a 
problem if the learning environment is carefully designed; the learning environment 
should support learners in finding the format and operators of (the) other 
representations by somehow linking them with the familiar representation(s).  
 To understand which parts of the domain are represented learners must have 
sufficient knowledge of the domain. When learners do not have this knowledge, the 
learning environment must provide at least the information learners need to be able 
to ‘read off’ the representation(s) that represent the domain. For many domains it is 
important that learners at least know which variables play a role. These variables 
need to be introduced explicitly or learners should be able to look them up in a help 
system, for example. Relations between domain variables can be either presented to 
the learner or explored by the learner.  

To be able to relate representations, learners must mentally search for 
similarities and differences. We believe that having some prior knowledge in the 
domain is imperative for finding meaningful relations. Of course, learners can relate 
elements of different representations without having domain knowledge (e.g., 
because they have the same colour), but then relating them does not have any 
educational value. To make sense of the relations, learners need to know what a 
particular variable in one representation represents, to be able to make sense of a 
corresponding element in a second representation. Knowing what a particular 
element represents in one representation also helps the learner to distinguish 
corresponding elements from non-corresponding elements in a second 
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representation. Although the learners must do the actual relating, the learning 
environment can provide direct support for the relation process. 
 To be able to translate between representations, learners need to interpret the 
effects that changes in one representation have on corresponding representations. By 
translating, learners are supposed to gain deeper understanding of the domain by 
articulating what happens to a second representation when a first is manipulated 
and/or by reflecting upon the similarities and differences between the 
representations. For example, learners should grasp that if in an animation a hand 
tightening a nut with a spanner is placed twice as far from the nut, this doubles the 
value of moment in an equation. Learners can only make this translation when they 
understand what the influence of arm on moment is. To do this, they must translate 
the concrete situation represented by the animation, via an abstract (mental) 
representation of the situation and a doubled value of arm in the equation, to the 
doubled value of moment. Translating between representations is a process that the 
learner must do mentally and/or explicitly. The learning environment cannot do the 
translation for the learner; it can only support the learner in the translation process, 
for example, by giving hints or prompts, explaining the relations or providing 
worked out examples of ‘interesting’ phenomena. Based on previous research (van 
der Meij & de Jong, 2006a, 2006b) we believe that learners need to be both 
prompted to translate between representations and guided in the translation process.  
 
It is important that the design of multiple representations offer support for learners 
in the knowledge generating processes of relating and translating. For simulation-
based learning environments, both integration and dynamically linking 
representations (Ainsworth & Peevers, 2003; Chandler & Sweller, 1991; van der 
Meij & de Jong, 2006a) are of proven value for helping learners to relate 
representations. 
 Integration of representations can make relations between representations 
explicit for the learner. Integrated representations appear to be one representation 
showing different aspects of the domain. By integrating representations, relations 
between them are shown directly to the learner. Having all related elements in the 
same place makes it easier to interpret the similarities and differences between 
corresponding features; therefore, integration is also believed to support the 
translation process. Bodemer et al. (2004) found that students working with 
integrated representations only learned more when they had to actively integrate the 
representations themselves. Bodemer and Faust (2006) only found positive effects 
of active integration when students were able to integrate the representations 
correctly. Chandler and Sweller (1991) only found positive effects of integration 
when individual units could not be understood separately. 
 With dynamically linked representations, actions performed on one 
representation are automatically shown in all other representations. If a learner, for 
example, changes the value of a force in a numerical representation, the 
corresponding representation of the force in an animation is updated automatically. 
A problem with dynamic linking might be that with multiple dynamically changing 
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representations, learners need to attend to and relate changes that occur 
simultaneously in different regions of various representations (Lowe, 1999). 
To facilitate the processes of relating and translation, representations can be 
introduced step-by-step. As a result, the number of relations and possible 
translations is increased likewise. Starting with a few relations and possible 
translations and then introducing more relations and possible translations step-by-
step might support learners in relating the representations and translating between 
them. In a previous study (van der Meij & de Jong, 2006b; chapter 3) we examined 
the effect of sequencing dynamic representations on learning outcomes. Two 
versions of the same simulation-based learning environment were compared: a 
learning environment providing the representations step-by-step (experimental 
condition) and a learning environment providing all representations at once (control 
condition). Both learning environments used the same integrated and dynamically 
linked representations. No differences were found between the two conditions. 
Moreover, post-test scores on translate items were low (3 out of 10 items correct). 
Log file analysis revealed that an intervening variable might have played an 
important role: the instructional support consisting of assignments and explanations 
that were present in the environment. This instructional support was the same for 
both conditions and focused only on relations between the domain variables. As a 
result, the subjects seem not to have focused on relating representations and 
translating between them.  
 
For successful inquiry learning, instructional support in the form of assignments and 
explanations is crucial (Mayer, 2004; Swaak, van Joolingen, & de Jong, 1998; van 
Berkum & de Jong, 1991). Instructional support helps learners to find their way 
through the learning environment and guides them to the aspects of the learning 
environment that are most important. Until now instructional support has mainly 
focused on the characteristics of the (simulated) domain.  
 In simulation based learning environments, for example, the assignments and 
explanations focus on the relations between the variables of the simulation model, as 
was the case in our studies cited above (van der Meij & de Jong, 2006a, 2006b). 
Since we found that instructional support has great impact on how the subjects 
worked with our multi-representational simulation-based learning environments, 
using the instructional support not only for domain-guidance, but also for giving 
hints and prompts to relate and translate between representations might be a good 
way to support learners.  
 In a study on economics principles of supply and demand using multiple 
representations, Tabachneck-Schijf and Simon (1998) found that rather than using 
multiple representations and benefiting from this, participants tended to reason with 
only one representation at a time. Students did not seem to realize that the 
representations should be mentally connected. Explicitly asking learners to relate or 
translate two or more representations may solve this problem. Moreover, prompting 
learners in this way may also result in (prompted) self-regulation (Azevedo, 2005; 
Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi, Deleeuw, Chiu, & Lavancher, 
1994) in the sense that they have to think about the connections between 



Prompts to translate between representations 

83 

representations and have to formulate an answer to the question(s) asked. Many 
authors agree that learning from multiple representations “… is not a passive 
process, but requires that the students actively engage in the processing of the 
representations.” (Van Meter, Firetto, & Higley, 2007, p. 7). Explicitly prompting 
learners to process the information from different representations may help.  

Research questions 

The goal of the current study was to determine if sequencing dynamic 
representations, combined with explicit instruction to relate representations and 
translate between them, has an effect on learning outcomes. Two versions of the 
same simulation-based inquiry learning environment on the physics topic of 
moments were compared: a learning environment providing the representations 
step-by-step, where the instructional support focused on relations between the 
variables in the domain as well as relations between the representations 
(experimental condition – R-Step) and a learning environment providing all 
representations at once, where the instructional support focused solely on relations 
between the variables in the domain (control condition – R-Once). Assignments in 
both conditions covered the same amount of domain information. The only 
difference was that students in the R-Step conditions were prompted to include two 
or more representations in their answers (we give an example in the Materials 
section on page 84). We expected students to learn the domain in both the R-Step 
and R-Once learning environment. Therefore, we expected higher post-test scores 
compared with pre-test scores. We expected the R-Step condition to lead to better 
learning outcomes on domain knowledge, transfer knowledge and on the ability to 
relate representations and translate between them. 

Method 
Subjects 
Subjects were 86 students from secondary vocational education (aged 15 to 21) and 
125 students from pre-university education (aged 13 to 15). Students in the first 
group were in their first year of either a course in mechanical engineering or 
architecture. Students in the second group were in their third year. Subjects came 
from four schools; two secondary vocational schools (school 1 and 2) and two 
secondary schools (school 3 and 4). A between subjects design was used, in which 
participants were randomly assigned to one of the two experimental conditions. 
Table 4-1 shows how the subjects were distributed across the conditions. 
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Table 4-1  Distribution of subjects across conditions 

  Condition  

Class School R-Step (m/f) R-Once (m/f) Total (m/f) 

1 1 12 (12/0) 10 (10/0) 22 (22/0) 

2 1 8 (8/0) 8 (8/0) 16 (16/0) 

3 2 13 (13/0) 12 (12/0) 25 (25/0) 

4 2 13 (13/0) 10 (10/0) 23 (23/0) 

5 3 10 (4/6) 11 (7/4) 21 (11/10) 

6 3 12 (3/9) 12 (9/3) 24 (12/12) 

7 3 9 (4/5) 8 (6/2) 17 (10/7) 

8 4 12 (2/10) 11 (4/7) 23 (6/17) 

9 4 11 (9/2) 10 (4/6) 21 (13/8) 

10 4 10 (4/6) 9 (9/0) 19 (13/6) 

Total  110 (72/38) 101 (79/22) 211 (151/60) 

m = male, f = female 
 
Materials 

Learning environment 
Subjects worked with a simulation-based learning environment on the physics topic 
of moments, built in the SimQuest authoring environment (de Jong, van Joolingen, 
Veermans, & van der Meij, 2005; van Joolingen & de Jong, 2003). The topic is 
compulsory for students in this study. The learning environment is based on guided 
inquiry learning (de Jong & van Joolingen, 1998). The learner has to engage in 
inquiry activities in order to learn about the properties of the simulation model and 
is guided in the inquiry process by a selection of ‘cognitive tools’ such as hypothesis 
scratchpads, monitoring facilities, model progression, assignments and explanations. 
Learners explore the simulation model by manipulating values of the input variables 
and observing the behaviour of output variables. 
 
The learning environment as used in this study consists of an introduction and 
several assignments. The introduction, which was the same for both conditions, 
gives an overview of ‘moments’ by presenting everyday examples in which 
moments play a role. After this introduction, learners explore specific aspects of the 
domain by choosing an assignment from the menu. When opening an assignment, a 
corresponding simulation interface opens. The assignments are numbered, so that 
learners are invited to work through the learning environment in a specific order. 
 Supported by the assignments (right screen in Figure 4-1), which differed 
between conditions, the learner can perform experiments in the simulation interface 
(left screen in Figure 4-1). The learner can manipulate the force, length and angle 
input variables and can observe the moment output variable. The types of 
representations available are: (1) a concrete representation (animation of a tackle, an 
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open-end spanner or car crane), (2) a diagrammatic representation (an abstract 
representation of the variables playing a role in the concrete situation), (3) a 
numerical representation (showing the values of the variables involved), (4) a 
dynamically changing equation, (5) a moment-arm graph, (6) a moment-force graph 
and (7) a dynamically changing table (showing one row that is dynamically updated 
when variables are manipulated by the learner). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-1  Assignment with simulation interface showing all representation types 

 
Representations 1, 2 and 3 are usually found in textbooks. These representations are 
the basic types presented to learners in this domain. They support learners in getting 
insight into the domain from different perspectives. The concrete representation (1) 
provides the learner with a context for the simulated task. This representation links 
the learning material to a real-life experience. The diagrammatic representation (2) 
helps learners to go beyond the concrete situation to a more abstract understanding 
of the relation between the variables involved. By providing this type of 
representation, it is expected that learners can use their acquired understanding in 
new situations. Both the concrete and diagrammatic representations present the 
domain in a qualitative way. The numerical representation (3) gives a quantitative 
view of the variables involved. The contribution of this representation is showing 
the values of the variables to support the numerical relations between the variables. 
The dynamically changing equation (4) represents the domain as a formula with 
dynamically changing numerical values. It shows the actual values of the variables 
together with their relations in a direct way. Learning (to use) the equation is very 
important: it has to be used to calculate moment. The graphs (5 and 6) are provided 
to help learners to predict relationships between the variables. In the graphs, any 
'pictorial' similarity to the represented domain has disappeared; therefore, graphs 
represent the domain in a more abstract way than do the concrete and diagrammatic 
representations (Bernsen, 1994). In addition, the graphs give the learner more direct 
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information about the relations between the variables than do representations 1 to 3. 
The dynamically changing table (7) also supports the understanding of numerical 
relations. It contains one row representing the actual values of all variables 
involved. To support learners in relating representations, we chose to dynamically 
link all the representations. We were able to integrate representations 1, 2 and 3 
because of their formats. The concrete and diagrammatic representations could 
easily be integrated because they share the same spatial properties. The numerical 
representations could be placed near the objects in the other two representations. 
 In addition to the dynamically changing table, an experiment table is introduced 
when learners come to assignment 7 (R-Once condition) or assignment 13 (R-Step 
condition). The experiment table is shown in Figure 4-2. This table has the same 
format as representation number 7 (the dynamically changing table), except that 
learners can save, compare, structure, replay and delete their experiments. 
Experiments are saved by clicking a save button; this adds a row to the table 
showing the variables’ values in a static fashion. Learners can replay an experiment 
by selecting a table row and clicking a start button. All representations then 
represent the values of the table row. 
 
 
 
 
 
 
 
 
 
Figure 4-2  Experiment table 

 
In the simulation interface, learners can manipulate the input variables by using the 
provided sliders. If a learner manipulates a slider, the corresponding changes are 
shown in the representations in real time. So, if a learner moves the force-slider, the 
element representing force is updated continuously and immediately, as is the 
change in moment. Learners can compare situations by moving the slider back and 
forth between different states of the simulation. They can also compare situations 
when they have access to the experiment table (see Figure 4-2). 
 In the R-step condition, the representations are introduced one by one: starting 
with the concrete representation, followed by the diagrammatic representation, the 
numerical representation, the equation, the graphs and ending with the table (Figure 
4-3 shows the first step; Figure 4-1 showed the final step). 
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Figure 4-3  First representation progression step (R-Step condition) 

 
Both experimental conditions cover the same amount of domain information. The 
assignments stimulate learners to explore the relations between the variables in the 
simulation model. In addition, in the R-Step condition learners are asked to relate 
and/or translate between the representations explicitly; learners have to find 
corresponding variables, describe the relation between two representations or have 
to translate between them. Each assignment starts with a short description of an 
aspect of the domain, asks the learner to explore this aspect and asks the learner to 
answer a question about it. In most assignments three or four questions are asked. In 
these assignments learners have to observe a specific situation, manipulate a 
variable, answer a multiple choice question and provide an explanation in their own 
words. For open answers, in the R-Step condition learners are explicitly asked to 
provide an answer including two or more representations. Figure 4-4 shows an 
example of a characteristic R-Step assignment.  
 Because the representations are presented one by one in the R-Step condition 
and additional hints and prompts for relating and translating are given, more 
assignments were needed to cover the same domain information compared to the R-
Once condition. This resulted in 18 assignments for the R-Step condition and 12 
assignments for the R-Once condition.  
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Figure 4-4  Example of a characteristic R-Step assignment  

 
Tests and questionnaire 
Subjects’ prior domain knowledge was assessed using an online pre-test. The pre-
test consisted of 20 items, both multiple-choice and open answer items: 10 items 
testing domain knowledge and 10 items testing transfer knowledge.The post-test 
consisted of 40 items, both multiple-choice and open answer items; 10 domain 
items, 10 transfer items, 10 items testing the ability to relate representations and 10 
items testing the ability to translate between representations. See Figure 3-4 on page 
71 in chapter 3 for examples of one test item from each category. 
 The post-test domain and transfer items corresponded to the post-test domain 
and transfer items. The post-test items differed slightly from the pre-test by 
changing the item and alternative answer orders. Since subjects did not know which 
items had been changed, they could not rely on a memory strategy. Compared with 
the study reported in chapter 3, the pre-test and post-test were slightly adapted 
because the learning environment in the current study contained graphs, whereas the 
learning environment used in the previous study did not. As a consequence, one 
domain item, two transfer items, three relate items and three translate items were 
different. 
 For each pre-test and post-test item, a subject received a score of 1 if the answer 
was correct or a score of 0 if the answer was incorrect. The maximum scores for the 
pre-test and post-test were 20 and 40 respectively. 
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To control for the influence of differences in cognitive load (Paas, Renkl, & 
Sweller, 2003, 2004), we asked the subjects to rate their cognitive load four times 
during working with the learning environment with an electronic questionnaire. The 
questionnaire consisted of 6 questions measuring extraneous load (EL), germane 
load (GL), intrinsic load (IL) and overall load (OL) (see Table 4-2). The 
questionnaire used a 7-point very easy to very difficult scale.  
 
Table 4-2  Cognitive load measures 

Question type Question 

EL1 At this moment I find working with the simulation … 

EL2 At this moment I find separating important from unimportant information … 

EL3 At this moment I find collecting all information I need in the simulation … 

GL At this moment I understand the simulation … 

IL At this moment I find the topic moments …  

OL At this moment I follow the simulation … 

 
Procedure 
The experiments were held at the participating schools and consisted of two 
experimental sessions of 100 minutes each. These sessions were held on two 
different days with a week time between the sessions in most cases. The first session 
consisted of an introduction, pre-test and working with the learning environment. 
The second session consisted of working with the learning environment and a post-
test. Subjects were randomly assigned to one of the two conditions using their 
seating placement. 
 In session 1, participants were informed about the experiment and were told that 
the test measured their prior knowledge of force, arm and moment. As an 
introduction, two participants were asked to come in front of the class to lift one of 
two similar chairs. One participant had to lift the chair close to his or her body and 
the other had to lift the chair with straight arms, as far from his or her body as 
possible. The class was then asked in which case the chair would feel most heavy. 
After this, the experimenter gave a brief description of moment, force and arm. 
 Participants were asked to fill in all pre-test items, even if they were unsure 
about the right answer. Subjects had a maximum of 40 minutes to fill in the pre-test. 
The learning environment session took place after all participants had completed the 
pre-test. After a five minute introduction by the experimenter on how to start and 
operate the learning environment, subjects could work at their own pace for 
approximately 40 minutes. They worked on their own and could question the 
teacher or experiment leader on operating the learning environment. Subjects were 
asked to do all assignments. 
 In session 2, participants could continue working with the learning 
environment. After logging in, the learning environment would continue at the point 
where participants ended it in session 1. All answers given to assignments in session 
1 were available in session 2. 
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After 45 minutes the participants were asked to close the learning environment and 
do the post-test. They could work a maximum of 45 minutes on this test. 

Results 
Pre-test and post-test 
The overall mean score on the 20 pre-test items was 10.04 (SD = 3.00). The overall 
mean score on the 20 post-test items corresponding to the pre-test items was 14.27 
(SD = 2.85). A repeated measures ANOVA showed that the post-test score on 
corresponding items was significantly better than the pre-test score (F(1,210) = 
387.98, p < 0.01). Repeated measures ANOVAs for each item category showed that 
the post-test scores on domain and transfer items were significantly better than the 
pre-test scores on these item types (F(1,210) = 292.23, p < 0.01 and F(1,210) = 
208.53, p < 0.01). 
 The overall post-test mean scores on the 10 relate items and 10 translate items 
were 7.14 (SD = 1.51) and 3.22 (SD = 1.62) respectively. The overall mean score on 
the complete post-test was 24.64 (SD = 4.41). Table 4-3 shows the means and 
standard deviations of the pre-test and post-test scores for the different item types 
per condition. 
 One-way ANOVAs showed significant differences between the experimental 
conditions on pre-test domain item scores and pre-test transfer item scores (F(1,210) 
= 10.08, p < 0.01 and F(1,210) = 4.19, p < 0.05) in favour of the R-Once condition. 
This means that the experimental conditions differed in prior knowledge. Therefore, 
for analysis on post-test results, the pre-test scores were used as covariate. A one 
way ANOVA showed no significant difference between overall pre-test scores and 
school type (F(1,210) = 1.03, p = 0.31). Therefore, no distinction was made 
between the two school types. Moreover, a one way ANOVA showed no significant 
difference between overall pre-test scores and class (F(1,210) = 0.98, p = 0.45). 
 One-way ANCOVAs on the post-test scores with pre-test scores as covariate 
showed the following results. A significant difference was found between 
experimental conditions on all 40 post-test item scores (F(1,209) = 5.25, p < 0.05) 
in favour of the R-Step condition. A significant difference was found between 
experimental conditions on the 10 domain item scores (F(1,209) = 4.55, p < 0.05) in 
favour of the R-Step condition. A trend was found on relate item scores (F(1,209) = 
3.46, p = 0.06) in favour of the R-Step condition. No differences were found on 
transfer items scores and translate item scores (F(1,209) = 0.65, p = 0.42 and 
F(1,209) = 0.60, p = 0.44). 
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Table 4-3  Means and standard deviations of pre-test and post-test scores per 
condition 

 R-Step R-Once 

 Mean (SD) Mean (SD) 

Pre-test     

Domain items (max. 10)  5.17  (1.79)  5.95  (1.76) 

Transfer items (max. 10)  4.28  (1.63)  4.73  (1.57) 

Pre-test total (max. 20)  9.45  (2.98)  10.68  (2.89) 

Post-test     

Domain items (max. 10)  7.87  (1.57)  7.07  (1.53) 

Transfer items (max. 10)  6.48  (1.77)  6.48  (2.00) 

Relate items (max. 10)  7.26  (1.65)  7.01  (1.33) 

Translate items (max. 10)  3.22  (1.73)  3.23  (1.51) 

Post-test total (max. 40)  24.84  (4.55)  24.42  (4.25) 

n = 211 
 
Electronic questionnaire 
The different types of cognitive load measures were combined into one cognitive 
load measure because correlations between the items were high, indicating that 
subjects did not differentiate between the measures. Reliability analysis showed that 
the questionnaires were highly reliable (see Table 4-4). 
 
Table 4-4  Reliability of the questionnaire 

Appearance N Cronbach’s Alpha 

1 193  0.94 

2 182  0.96 

3 147  0.98 

4 119  0.98 

Note: The number of subjects (N) filling in the questionnaire decreased dramatically from 
appearance 1 to 4. This does not mean that they did not work through the complete learning 
environment. Most subjects completed all assignments. However, many subjects closed 
questionnaires without answering it. 
 
A repeated measures ANCOVA with pre-test scores as covariate showed an 
interaction effect between questionnaire appearance and condition (F(1,100) = 5.83, 
p < 0.01). Therefore, ANCOVAs per questionnaire appearance were done showing 
the following results. No differences were found between experimental conditions 
on first appearance of the questionnaire (F(1,204) = 0.50, p = 0.61). Significant 
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difference were found between experimental conditions on questionnaire 
appearance 2, 3 and 4 (F(1,187) = 10.95, p < 0.01; F(1,147) = 7.47, p < 0.01; 
F(1,120) = 4.29, p < 0.05), with higher cognitive load reports for the R-Step 
condition. 
 Figure 4-5 shows the development of cognitive load over the four questionnaire 
appearances, where higher scores indicate higher cognitive load. Since the number 
of subjects filling in the questionnaire differed per appearance, the graph only shows 
the subjects that filled in the questionnaire. A graph per questionnaire appearance 
including all subjects filling in that particular questionnaire showed the same 
pattern. 
 
Figure 4-5  Development of cognitive load over the four questionnaire appearances 
where higher scores indicate higher cognitive load 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
n = 102 

Discussion 

The aim of this study was to examine if sequencing multiple dynamic 
representations combined with explicit instruction to relate and translate between 
representations (R-Step condition) would lead to better learning results than 
providing all representations at once with instruction focusing solely on relations 
between domain variables (R-Once condition). 
 Overall, we found that subjects learned from working with the learning 
environment. Post-test scores were significantly better than pre-test scores. Subjects 
in the R-Step condition improved from an average of 47% correct answers to an 
average of 72% correct answers on the 20 test items. Subjects in the R-Once 
condition improved from an average of 53% correct answers to an average of 71% 
correct answers. Compared to the pre-test scores, the knowledge gain for both 
conditions was good, indicating that both learning environments were well designed 
for their purpose. Taking a closer look on the pre-test items, scores on 9 of the 20 
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items were low in both experimental conditions and in both conditions these were 
the same items: 4 domain items and 5 transfer items. These items were answered 
correctly by 3% to 37% of the subjects in the R-Step condition and 3% to 44% of 
the subjects in the R-Once condition.  
 Although most subjects scored well on the post-test items, there were two 
transfer items that most of the subjects were unable to answer correctly. Both items 
presented situations that differed significantly from the ones offered in the learning 
environments. The low scores on these items indicate that the subjects did not 
acquire deep understanding of the domain. 
 As expected, we found that sequencing representations combined with 
instructional support focusing on relating and translating representations did lead to 
better learning outcomes. However, this was found only for the domain test items. A 
trend in favour of the R-Step condition was found on relate items and no differences 
were found on transfer items and translate items. Scores on the translate items were 
low, indicating that subjects had difficulties with these items. These scores were 
comparable with the low scores found in the study reported in chapter 3. 
 Subjects did not discriminate between cognitive load types. As a consequence, 
we were not able to identify what type of load caused higher cognitive load of the 
R-Step condition. A reason for reporting higher cognitive load by subjects in the R-
Step condition could be their lower prior knowledge. As a consequence, they could 
have experienced the topic and/or the learning environment as more difficult than 
subjects in the R-Once condition. Whether this is due to the intrinsic load caused by 
the subject matter content or the extraneous load caused by the learning 
environment, we cannot say. On the positive side, it could be that subjects in the R-
Step condition experienced the prompts for relating and translating between 
representations as more demanding, which would mean that the learning 
environment resulted in higher germane load for subjects who were able to relate 
and translate. 
 Our results indicate that the subjects gained enough knowledge in the domain to 
be able to relate the representations. However, this was not the case for all 10 post-
test items. Subjects in both experimental conditions had difficulties with three test-
items: relating an M-F graph to an M-a graph was difficult, as was indicating arm in 
two test items where the force was at an angle and where either concrete and 
diagrammatic representations were shown or only a diagrammatic representation 
was shown. To be able to answer these test items correctly the subjects needed to 
have a thorough understanding of arm. They could not rely on surface features such 
as corresponding colours or values to relate the representations. 
 Sufficient domain knowledge and being able to relate representations are 
prerequisites for a successful translation between representations. Since the post-test 
scores on both domain and relate items are moderate (domain) and high (relate), one 
could expect subjects in both conditions to have successful results on the translate 
items. Why is it then that they largely fail to answer these items correctly? At this 
point every answer to this question is speculative. It could have been the case that 
subjects were just able to master the domain and therefore they were able to answer 
most of the domain and translate items correctly, but mastering the translate items 
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was one step too many. Since the subjects were unfamiliar with the translate item 
types, a likely explanation could be that they needed more practice in answering 
these types of questions. Subjects in the R-Step condition were prompted to 
translate between representations in the learning environment, but analysis of the 
answers given showed that the subjects gave very brief answers and that these 
answers did not go beyond relating representations. Looking back at the hints and 
prompts we can find a possible explanation for this. It appears that most questions 
could be answered on a ‘relate level’ so subjects were not ‘forced’ to translate 
between representations. Furthermore, having hints and prompts provided was new 
for our subjects; they were not used to this kind of question. Because of this, it 
could well be the case that the subjects did not answer the hints and prompts as 
expected. 
 
We claim that future research on learning with multiple representations needs to 
focus on encouraging learners to actively translate between representations. The 
results of this study indicate that using hints and prompts might be a good way to 
support this. At this moment we do not have an answer to the question of what kinds 
of hints and prompts give the best support. In addition to research on hints, prompts, 
the step-by-step introduction of representations also needs more research. In both 
our previous work and this study we followed a sequence from concrete to abstract 
when introducing the representations. One could ask if this is the most optimal 
sequence. At this moment we are unable to answer this question. We followed a 
sequence that is widely used in textbooks. Whether this is the right sequence for 
learning with multiple representations is not known. It might be a good idea to set 
up experiments in which different sequences are studied. Also, the step size needs 
more attention. In this study we introduced every new representation as a whole, 
whereas in our former study we introduced some of the representations 
(diagrammatic and numerical) per domain variable. We have not yet studied the 
effects of the step size, but it would be interesting to see if the step size makes a 
difference. 
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Conclusion and discussion 
 
Two assumptions formed the bases for the studies reported in this thesis. The first 
was the belief that learning with multiple representations has several advantages 
over learning with a single representation. The second was that learning with 
multiple representations also introduces new problems and poses new challenges for 
students. Therefore specific support was seen as necessary for learners to 
successfully profit from the advantages of multi-representational learning 
environments. In our studies, the following research questions were addressed: 
 
Does integrating and/or linking dynamic multiple representations have an effect on 
learning outcomes? 
 
Does sequencing dynamic representations have an effect on learning outcomes? 
 
Does sequencing dynamic representations combined with explicit instruction to 
relate and translate between representations have a positive effect on learning 
outcomes? 
 
In this chapter the results and conclusions of the three studies are summarised, 
followed by a comparison of the three studies, limitations of our studies and overall 
conclusions. 

Answering the research questions 

Does integrating and/or linking dynamic multiple representations have an effect on 
learning outcomes? 
 
In study one, the role of dynamic linking and integration of representations was 
examined. Results showed that presenting representations in an integrated plus 
dynamically linked format yielded the best learning results. We found significant 
differences on domain item scores, which indicated that the subjects learned the 
domain better if the representations were integrated plus dynamically linked. To 
understand the domain, the subjects had to (mentally) integrate the representations. 
Providing a pre-integrated format where possible, together with dynamic linking, 
best supported this. This is in accordance with the finding by Chandler and Sweller 
(1991) that integrated representations lead to better learning results than separate 
representations when individual units cannot be understood separately. A trend in 
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favour of the integrated plus dynamic linking condition was found on the 
representation items. Our expectation that supporting learners with a combination of 
integration and dynamic linking would lead to better transfer to new situations was 
not confirmed by the results. Results on transfer items, which we defined as “new 
contexts and relations between variables that were not asked for in the learning 
environment but could be derived from the domain knowledge”, showed no 
difference between conditions. This was disappointing, since the support was 
expected to lead to a deeper understanding of the domain. This can be explained by 
the short average learning time of 38 minutes and the possibility that the subjects 
related the domain too much to the contexts provided. 
 We found no differences in learning results for test items corresponding to the 
low complexity part of the learning environment. This did not surprise us, since 
these test items could be answered with limited knowledge about the domain. To be 
able to answer these items, it was not necessary to combine or integrate information 
from different representations. For the high complexity part of the learning 
environment, combining and integrating representations played a greater role. 
Scores on the domain items corresponding with the high complexity part of the 
learning environment showed the best learning results for the integrated plus 
dynamic linking condition. Since the presentation of the domain was more complex 
in this part, the interaction between the representational support and domain 
complexity caused the differences between the experimental conditions. 
 
Does sequencing dynamic representations have an effect on learning outcomes? 
 
In study two, a step-by-step introduction of representations was compared with an 
introduction of all representations at once. Contrary to our expectations, we found 
no difference between the experimental conditions. We explained this result by the 
fact that both conditions received the same assignments and that these assignments 
guided learners through the learning environment step-by-step. The assignments 
directed the subjects’ attention to the newly introduced representations and variables 
but did not explicitly focus on relating or translating between the representations. 
The result was that the subjects did not seem to relate the representations and/or 
translate between them.  
 In this study, learning results on translate test items were low. We believe that 
the ultimate goal of learning with multiple representations is to gain deeper 
understanding of a domain by being able to translate between the representations, 
but we obviously did not succeed in supporting this. In both study one and two, the 
type of support implemented in the learning environments was so-called surface 
feature level support (see Seufert, 2003; Seufert & Brünken, 2006; Seufert, Jänen, & 
Brünken, 2007). This type supports learners in finding relations between 
representations but does not necessarily encourage them to try to translate between 
them. That is why we focused on encouraging learners to translate between 
representations in study three. 
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Does sequencing dynamic representations combined with explicit instruction to 
relate and translate between representations have a positive effect on learning 
outcomes? 
 
In study three, we took the findings of study two as our starting point. We compared 
a learning environment providing the representations step-by-step, where the 
instructional support focused on relations between the variables in the domain as 
well as on relating and translating between the representations, with a learning 
environment providing all representations at once, where the instructional support 
focused solely on relations between the variables in the domain. The results showed 
that step-by-step introduction combined with instructional support focussing on both 
domain knowledge and relating representations led to better learning results on 
domain test items. Although this study produced the expected results, scores on 
translate items were again low. 

Comparing the three studies 
Comparing the learning environments 
Although the learning environments in all three studies covered part of the physics 
domain of moments, the specific part of the domain that was covered differed 
between studies, as did the number and type of representations and the number and 
type of assignments. 
 
Part of the domain covered 
The part of the domain covered differed between the three studies. Table 5-1 shows 
which variables were addressed in the studies.  
 
Table 5-1  Variables addressed in the three studies 

 Study 

 1 2 3 

Moment (M) v v v 

Arm (a) v v v 

Force (F) v v v 

Second arm (a2) v   

Second force (F2) v   

Resultant arm (ar) v   

Resultant force (Fr) v   

Angle of force (α)  v v 

Length (l)  v v 

Angle of spanner / crane (β)   v 
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The choice of leaving out a second arm and force in studies two and three was based 
on conversations with teachers. According to the teachers, their students had the 
most difficulty with angled forces. Many students think that the distance from a 
point of application to a clamp determines moment, whereas the shortest distance 
from a force to a clamp does. Since many learners confuse angled force with a 
complete angled system and the subjects had more time to work with the learning 
environment in study three, we included both. Changing the part of the domain 
covered influenced the information the representations contained as well as the 
content of the assignments. 
 
Number and type of representations 
The number of representations used differed between the three studies. In studies 
one and two we offered the subjects five representations. In study three the number 
of representations presented was seven. Although the number of representations in 
studies one and two were the same, these were not the same types of 
representations.  
 A concrete representation in all studies was a learner-controlled animation that 
provided the subjects with a context for the simulated task. In study one this was 
either an open-end spanner or a hoisting crane. In study two this was only an open-
end spanner. In study three this was either a tackle, open-end spanner or a car crane. 
We chose different contexts within studies one and three because we wanted to 
stimulate transfer. The reason for only using one context in study two was because 
the learning environment used in study one was too extensive. We needed too many 
assignments to support the subjects in learning the domain with the result that the 
subjects spent too little time per assignment. This led to a superficial exploration of 
the domain. Looking back, only providing one context was not a good choice. 
Providing different contexts in the learning phase is necessary for transfer to new 
situations. Providing only one situation may lead to student belief that the rules only 
apply in that specific situation. This is why we re-introduced different contexts in 
study three. This, however, made the learning environment once again more 
extensive. That is why we changed our procedure in study three. Subjects now had 
90 minutes to work with the learning material instead of a maximum of 60 minutes 
in studies one and two. 
 All studies contained a diagrammatic representation. The diagrammatic 
representation showed the variables and relations between them in an abstract way. 
We see the diagrammatic representations as intermediate representations between 
concrete representation(s) and an equation. In study one the diagrammatic 
representation was presented directly from the start. In studies two and three this 
depended on the experimental condition. The step-by-step introduction of the 
diagrammatic representation differed between studies two and three. In study two 
the diagrammatic representation was introduced variable-by-variable, whereas in 
study three the three base variables (moment, force and arm) were shown at once.  
This was done to make the learning environment more consistent: the other 
representations were also introduced as wholes. Whether representations can better 
be introduced variable by variable or at once needs further research. 
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All three studies started by introducing the variables first qualitatively (showing the 
names) and thereafter quantitatively (showing the symbol, value and unit). This was 
done to give the subjects the opportunity to get acquainted with the variables and 
their qualitative relations before going into more detail. 
 In study one and three we used graphs, whereas in study two we did not. The 
reason for not using graphs in study two was that we wanted to make the learning 
environment less extensive. Since graphs are important representations in the 
moments domain, we re-introduced them in study three. We were able to do this 
because we increased the learning time. 
 In the first study, one of the assignments asked the subjects to find the equation 
for moment (M = F x a) themselves. Since this equation is of great importance and 
we wanted students to relate the equation to the other representations, in studies two 
and three we introduced the equation as one of the representations. 
 The last representation, the dynamically changing table, was only used in 
studies two and three. We introduced this table because it is expected to support the 
understanding of numerical relations. By introducing the table, we could also use 
the experiment table in which subjects could save, compare, structure and replay 
their experiments. 
 We based our choices on the types of representations most used in teaching the 
topic of moments. However, we did not investigate if these were the ‘best’ 
representations for learning the domain. Moreover, it does not necessarily follow 
that combining these representations in a multi-representational learning 
environment leads to the best mental model of the domain. Research on which 
combination of representations leads to the best learning outcomes is necessary. The 
problem is, however, that the best combination largely depends on the domain and 
learning task.  
 A good starting point for choice of representations is the analysis by Lohse, 
Biolsi, Walker and Rueter (1994). In their view, visual representations are data 
structures for expressing knowledge. They developed a structural classification of 
representations by analysing the way in which different representations were 
perceived. This resulted in 11 categories, each with its own characteristics: graphs, 
numerical tables, graphical tables, time charts, networks, structure diagrams, process 
diagrams, maps, cartograms, icons and pictures. It might be useful to investigate 
whether the characteristics identified by Lohse et al. also apply when different 
representations are combined and how making use of these characteristics can help 
designers choose the representations best suitable for specific domains and learning 
tasks. However, it is not enough to use only the classifications developed by Lohse 
et al. (1994). They categorised only static representations, whereas in our 
simulation-based learning environments the representations all dynamically changed 
if learners manipulated a variable. The dynamic representations we used often have 
different characteristics compared to their static equivalents. Bernsen (1994), in his 
taxonomy of representational types, identified 28 different types of representations. 
Of these 28 types, the following are important for the design of simulation-based 
learning environments: static diagrammatic pictures, static non-diagrammatic real-
world pictures, static graphs, animated diagrammatic pictures, dynamic real-world 
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pictures, dynamic graphs, arbitrary static diagrammatic forms, animated arbitrary 
diagrammatic forms, static graphic structures and dynamic graphic structures. 
 The representation types are not the only consideration when designing a 
simulation-based learning environment with multiple representations. We agree with 
Ainsworth (2006) that the number of representations, the way that the information is 
distributed over representations and the sequence of the representations are also 
necessary design decisions. 
 
Number and type of assignments 
The number of assignments used in the three studies differed considerably. The 
learning environment used in study one contained 31 assignments. As reported in 
the results section of study one, the subjects only spent an average of 77 seconds per 
assignment. This could be explained by the fact that we asked them to do all 
assignments. However, since the subjects in study one only spent an average of 29 
minutes working with the learning environment, we believed that the assignment 
types were responsible for the short duration. The assignments asked very specific 
questions about the relations between the variables in the domain that the subjects 
could answer either by selecting answer alternatives or by adjusting variable values. 
Two introductory assignments, in contrast, asked the subjects to formulate their own 
answer. In these assignments we asked the subjects to describe what they noticed 
given a specific situation. No feedback was given on these two assignments. 
 In study two we changed both the number and type of assignments to try to 
overcome the problem that the subjects only did what was explicitly asked for in the 
assignments. Although we used the same assignment types, the questions asked in 
the 16 assignments differed from study one. We encouraged the subjects to reflect 
on their answers and actions by asking them to justify their answers with their 
experiment activities and to provide an explanation for their given answers. After 
answering the question, the subjects received feedback in the form of the right 
answer with an explanation. As reported in the discussion, however, the log files 
showed that learners did not explore the simulation for other features than those 
explicitly indicated in the assignments and their reflections were very brief. 
Moreover, where almost all reflections contained relations between variables in the 
domain, only a few reflections contained relations of representations or translations 
between them. 
 The number and type of assignments in study three depended on the 
experimental conditions. The learning environment used in the R-Step condition 
contained 18 whereas the learning environment used in the R-Once condition 
contained 12 assignments. The differences is due to the fact that in the R-Step 
condition, the representations were presented step-by-step and additional hints and 
prompts for relating and translating were given; therefore more assignments were 
needed to cover the same domain information compared to the R-Once condition. 
The assignments stimulated learners to explore the relations between the variables in 
the simulation model. In addition, in the R-Step condition subjects were asked to 
relate and/or translate between the representations explicitly; subjects had to find 
corresponding variables, describe the relation between two representations or had to 
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translate between them. Each assignment started with a short description of an 
aspect of the domain, asked the subject to explore this aspect and answer a question 
about it. In most assignments three or four questions were asked. In these 
assignments the subjects had to observe a specific situation, manipulate a variable, 
answer a multiple choice question and had to provide an explanation in their own 
words. In the case of open answers, in the R-Step condition subjects were explicitly 
asked to provide an answer including two or more representations. 
 Although research has shown that providing instructional support is needed for 
successful inquiry learning (de Jong & van Joolingen, 1998; Mayer, 2004; Swaak, 
van Joolingen, & de Jong, 1998), not much is known about the types of assignments 
and explanations to provide. Although our research did not primarily focus on the 
types of assignments and explanations to offer, it has largely influenced our 
findings. More research is needed to be able to identify how different types of 
assignments and explanations support learners when learning with simulation-based 
inquiry learning environments. 
 
Comparing the tests 
Both the pre-tests and post-tests differed between the three studies. The pre-test and 
post-test for study one contained 7 domain test items and 17 transfer items, whereas 
there were 10 of each in studies two and three. Apart from the number of items, the 
items themselves differed slightly. These differences were dictated by the 
differences in the learning environments. The tests in study one contained only 
multiple choice questions. In studies two and three we used a combination of 
multiple choice and open answer questions. 
 In studies two and three we made a distinction between relate and translate 
representation items; this was not the case in study one, where the post-test 
representation items were a combination of both. To determine whether the subjects 
were better at relating or translating between representations we re-analysed the 
representation items from study one. Of the 14 representation items, 5 could be 
classified as relate items and 6 as translate items. Table 5-2 shows the means and 
standard deviations of the relate and translate items from study one. Although the 
remaining three items contained a question in text with a multiple choice answer of 
four diagrams, these items could not be categorised as either relate or translate items 
by the definitions we use for relating and translating. These items gave 
diagrammatic representations of two forces and asked the subjects to calculate the 
resultant force, asked them to indicate which representation showed the resultant 
force in the right place and asked them when the given resultant force was equal to 
force one.   
 A one way ANOVA showed a marginally significant difference between the 
experimental conditions on relate item scores (F(2,69) = 2.95, p = 0.06). Tukey 
HSD post hoc analyses showed that subjects in the I-DL condition scored 
marginally better than subjects in the S-NL condition (p = 0.08). No difference was 
found between conditions on translate item scores (F(2,69) = 0.94, p = 0.40). 
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Table 5-2  Means (standard deviations) of relate and translate items study 1 per 
condition 

 Condition 

 S-NL S-DL I-DL 

Relate items (max. 5)  3.13  (1.08)  3.21  (1.47)  3.92  (1.14) 

Translate items (max. 6)  3.04  (1.20)  3.29  (1.33)  3.54  (1.25) 

Total (max. 11)*  6.17  (1.88)  6.50  (2.34)  7.46  (1.82) 

n = 72 
* Three items could not be categorised as relate or translate items 
 
In study one, both the pre-test and post-test contained specific relate and translate 
items, whereas in studies two and three, we only included these items in the post-
test. The reason for not including these items in the pre-test in studies two and three 
was that we assumed the subjects had no or low prior knowledge about the domain 
and that we believe prior knowledge is necessary to be able to relate and translate 
between multiple representations. 

Limitations of our studies 

The consequence of our choice to support learning with multiple representations in 
simulation-based learning environments based on inquiry learning was that the 
environments were very complex. The subjects had several different tasks to 
perform in a short period of time. It may well be the case that the inquiry tasks they 
had to perform interacted with the support we gave them to learn with multiple 
representations. As found in study two, the type of assignments most probably had 
impact on the way the subjects processed the representations. Our studies cannot 
answer the question of what exactly caused what. In all three studies it was the 
combination of inquiry support and representational support that led to the results 
found.  
 Our learning environments contained five (studies one and two) or seven (study 
three) different representations. This may have been too many to evaluate the effects 
of the representational support we provided. However, fewer representations cannot 
cover all aspects of the domain. Despite this problem, it may be worthwhile to start 
off with fewer representations to see more specifically what the effects of the 
support measures are. 
 Our choice to perform the experiments in the participating schools as part of the 
curriculum can be seen as either an advantage or disadvantage. The advantage is 
that our studies were implemented in the course curricula. Instead of using standard 
materials, the students worked with our simulations to learn the topic. Because of 
this, the ecological validity of our experiments was high. A disadvantage was the 
lack of experimental control apparent when conducting research in schools as 
opposed to lab experimentation. In our studies we had to cope with classrooms that 
were double booked, a complete group that did not turn up because the teacher was 
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away, computer malfunctions, uninstalled software and no Internet access in one of 
the classrooms. Although, most of these problems were overcome, in study three 
they resulted in missing values for a complete group with the result that this group 
had to be excluded from the study. Another disadvantage was that not all subjects 
were motivated to participate in our studies. Pre-university students especially did 
not always see the point of learning the topic.  
 Ideally, we would like learners to become experts in using multiple 
representations over a very short period of time. In our studies learners had a 
maximum of one and a half hours to work with the learning materials. Experts in a 
domain, however, became experts over a very long period of time. They learn to 
switch between representations to solve a particular problem through experience. 
Our expectation that learners would be able to translate between representations 
after a learning phase of 90 minutes maximum was perhaps too optimistic. In a 
recent study, Dean and Kuhn (2007) found that students need longer time to learn 
with inquiry learning environments for knowledge consolidation. Since our learning 
environments were based on inquiry learning, it would be interesting and valuable 
to carry out studies in which learners could learn with multiple representations over 
a longer period of time.  
 Since we wanted to investigate the role of support measures within our learning 
environments we gave the teachers involved a very small role. They were not 
allowed to explain relations between representations. However, we believe that 
teachers can play a very important role in stimulating learners to relate and translate 
between representations. Moreover, teachers can give learners just in time support 
when they do not understand a specific representation, among other learning 
difficulties inherent with complex science topics. We argue that the role of the 
teacher is crucial, even if the learning material is designed for self-study. 

Overall conclusions 

From study one we can conclude that dynamic linking combined with integration of 
representations is preferable in learning with multiple dynamically changing 
representations in simulation-based learning environments. This was found to yield 
the best learning results. Although one could conclude on the basis of the results 
found in study two that introducing representations step-by-step is not necessary, we 
argue that a step-by-step introduction is preferred. Sequencing multiple 
representations has two advantages. First, the step-by-step introduction of 
representations gives learners the opportunity to get acquainted with one 
representation before moving on to the next. Second, as was the case in study two, it 
supports instructional designers in structuring the instructional support. Without a 
step-by-step introduction of representations the instructional support would most 
likely be structured differently, as was the case in study one. Our rationale for 
sequencing multiple representations, domain and task permitting, was confirmed in 
study three. In this study the R-Step condition showed the best learning outcomes. 
Since the R-Step condition was a combination of step-by-step introduction of 
representations and providing hints and prompts, we cannot say whether it was the 
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combination of both or one of the support types that led to this result. Future 
research might investigate specific effects of different support types.  
 Working with the learning environments resulted in good scores on domain 
items and relate items but not on transfer and translate items. Working with the 
learning environments used in study three led to the best learning results on transfer 
items. Subjects in the R-Step condition in study three answered 65% of the transfer 
items correctly, whereas in study one subjects in the I-DL answered 45% of the 
transfer items correctly and in study two 47% of the transfer items were answered 
correctly. Since we found no differences on transfer scores between experimental 
conditions in study three and the post-test transfer items in studies two and three 
were the same, it seems that the combination of a longer learning phase and 
providing more contexts led to better transfer. However, although transfer scores in 
study three were better than the scores in studies one and two, they were still 
relatively low. In all three studies the scores on translate items were even lower. 
One reason for low scores on both the transfer and translate items could be that 
learners had to perform too many new tasks. Almost everything in our learning 
environments was new for the subjects. They did not have any experience with 
simulation-based learning environments or the types of questions asked, nor were 
they used to inquiry learning (apart from doing physics and science lab experiments 
with real objects). Furthermore, they were not used to learning from multiple 
dynamically changing representations. This may also have led to their ‘normal’ 
behaviour of doing only what they were explicitly asked for in the assignments. For 
these subjects this may have been the only thing that looked familiar. 

4 tasks in 4 steps 

The starting point for the support examined in our studies was that learners need to 
be able to perform four tasks when learning with multiple representations. First, 
they have to understand the syntax of each representation. Understanding the syntax 
means that learners understand the format (e.g., labels, axes and line shapes) and 
operators (e.g., plus, minus and divide) of the representation. Second, they have to 
understand which parts of the domain are represented. Third, they have to be able to 
relate the representations to each other if the representations are (partially) 
redundant. This means that learners have to search for similarities and differences. 
Fourth, they have to be able to translate between the representations. This means 
that learners need to interpret the effects that changes in one representation have on 
corresponding representations. Translating between multiple representations is the 
ultimate goal of using them. By translating, learners are expected to gain deeper 
understanding of the domain by articulating what happens to a second 
representation when a first is manipulated and/or by reflecting upon the similarities 
and differences between the representations. Learners must perform these tasks in 
sequential order to be able to learn from multiple representations.  
 
Step one: understanding the syntax 
We cannot expect learners to learn from learning environments containing multiple 
representations if they are unfamiliar with the syntax of the representations. If 
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learners are unfamiliar with the format and operators of a representation, the 
learning environment must provide support for this. The kind of support the learning 
environment should give depends on the domain, the prior knowledge of the learner 
and the complexity of the representation(s). In addition, a familiar representation 
can support learners in learning successfully the format and operators of an 
unfamiliar one. In this case the relations between the familiar and unfamiliar 
representations should be made explicit somehow (see the section on Step three: 
relating representations, page 107).  
 Although it is imperative for learning with multiple representations, we did not 
explicitly support learners in understanding the syntax of the representations. We 
assumed that learners would be able to relate possibly unfamiliar representations to 
familiar ones. All learning environments started with concrete examples and 
representations that had the function of constraining interpretation of the other 
representations. However, we did not study whether the constraining representations 
could fulfil this role. Moreover, we did not support learning all syntaxes nor did we 
test to see if students were already familiar with the ones presented. 
 Examining whether learners understand the syntax of the representations 
provided in multi-representational learning environments should be a theme in 
future research. Formative tests during the learning phase can possibly be 
implemented to determine if the syntax is understood. Moreover, if learners are 
unfamiliar with a type of representation, the relations between a familiar and the 
unfamiliar representation not only needs to be shown but must also be explained. 
 
Step two: understanding which parts of the domain are represented 
The second step in learning with multiple representations is understanding which 
parts of the domain are represented. For this, learners need to have some prior 
knowledge about the domain. The minimum requirement for the learners is to know 
which variables are involved. If learners are new to the domain, these variables 
should be introduced explicitly.  
 Our learning environments were expected to support learners in understanding 
which parts of the domain were represented. All introductions gave an overview of 
both the domain and learning environment followed by real life examples and 
problems. Moreover, the assignments guided learners in learning the domain 
through an inquiry approach. However, we did not examine whether learners knew 
which representations represented which parts of the domain. 
 
Step three: relating representations 
Steps three and four are important exclusively for learning with multiple 
representations, where relating representations is a prerequisite for translating 
between them. Relating representations can be supported in various ways. In chapter 
one, we gave several examples of this. In study one we found that dynamic linking 
combined with integrating representations led to better learning outcomes. 
Therefore, we also included this support types in studies two and three. 
 Although dynamic linking and integration showed positive effects in our 
learning environments, it is necessary to study their effects more. From the results of 
our studies, for example, we cannot tell the conditions under which integration does 
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or doesn’t work. For this, we suggest experiments focussing exclusively on the role 
of integration of representations. The same applies for dynamically linking multiple 
representations. 
 
Step four: translating between representations 
The ultimate goal of learning with multiple representations is to gain deeper 
understanding of a domain by translating between the representations. Translating 
between representations is expected to lead to a mental model of the domain 
consisting of different representations with meaningful links between them. This 
mental model should be organised in such a way that learners can take advantage of 
the properties of several (mental) representations to solve domain problems. 
Therefore, they must be able to switch between different representations. Kozma 
and Russel (1997) found that this distinguishes experts from novices. Kozma (2003) 
wrote: “Scientists coordinate features within and across multiple representations to 
reason about their research and negotiate shared understanding based on underlying 
entities and processes.” (p. 205). Learning to translate between representations is 
expected to lead to this expert behaviour. Multi-representational learning 
environments have the potential to give learners a repertoire of representations to 
choose from to solve a particular problem. For example, given a concrete situation, 
the learner must be able to (mentally) project a diagram of the situation to be able to 
use the variables and relations that play a role. 
 Our assumption in studies one and two was that integration and dynamic linking 
would support both relating and translating between representations. However, this 
was not the case. We see translating between representations as an active process to 
be carried out by the learner. Support must provoke this active behaviour. The 
results of study three showed that providing hints and prompts to encourage learners 
to actively translate between representations results in better learning outcomes. But, 
because we could not separate the effects of the step-by-step introduction of 
representations and providing hints and prompts, we cannot say what led to higher 
domain knowledge. Moreover, the provided support did not lead to better scores on 
the translate items. Besides our speculative conclusion that the subjects could only 
have been able to just master the domain in the short learning time and that the type 
of questions asked were new for them, the type of hints and prompts we gave may 
not have been sufficient to encourage the subjects to translate between the 
representations. Future research has to focus on encouraging learners to translate 
between representations. Since we found that the instructional support given in the 
assignments and explanations had great impact on how learners work through the 
learning environment, we argue that support mechanisms of this type can play an 
important role. Therefore, future research needs to address the role of assignments 
and explanations. 
 In our research we were not able to detect what (combinations of) 
representations learners used. However, it is important to know what representations 
learners use to solve particular problems in order to study the effects of different 
representations. Recently, eye tracking studies have been carried out (see e.g., 
Schwonke, Renkl, & Berthold, 2007) in order to observe how learners use multiple 
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representations,. At the moment most studies using eye tracking are exploratory. We 
consider the use of eye tracking for answering specific research questions, such as 
observing how learners react on specific assignments asking them to relate two 
representations, to be necessary and promising. However, eye tracking information 
does not provide information on why learners look at certain representations. 
Because it is important to study learners’ reasoning processes, eye tracking needs to 
be combined with other techniques like cued retrospective reporting and structured 
interviews (van Gog, Paas, van Merriënboer, & Witte, 2005). 
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Summary 
 
Many learning materials offer multiple representations. Textbooks, for example, use 
photographic images to illustrate and explain parts of the text. In modern, computer-
based learning environments many additional representation types are available, 
including: audio, video, animations and dynamically changing graphs and tables. 
This thesis bundles three studies on supporting learning with multiple 
representations in simulation-based learning environments. 
 Simulation-based learning environments offer learners the opportunity to 
perform experiments in controlled settings. They contain an executable model of a 
(natural) system and simulate the behaviour of the modelled system. Learners 
explore the simulation model by manipulating values of input variables and 
observing the behaviour of output variables. By understanding the relations between 
the variables, it is expected that learners acquire a deeper understanding of the 
domain and are able to transfer this knowledge to similar ‘problems’ in other (real) 
situations. The representations in simulation-based learning environments are often 
dynamic, meaning that the information they hold changes based on manipulations in 
the learning environment. Most simulation-based learning environments contain 
multiple representations. 
 The basic idea of using multiple representations is that learners can benefit from 
the properties of each representation. If learners are capable of mentally 
coordinating the information from several representations, they have a more 
complete picture of the represented domain compared with learning the domain with 
only one representation. It is expected that this will lead to a deeper understanding 
of the subject being taught. However, to learn from multiple representations learners 
have to: (1) understand the syntax of each representation, (2) understand which parts 
of the domain are represented, (3) relate the representations to each other if the 
representations are (partially) redundant and (4) translate between the 
representations. 
 In order to understand the syntax of each representation, learners must learn the 
format and operators of the representations. Moreover, operations on a 
representation must be coordinated with the format of the representation. So, the 
learner must understand which operations to carry out on particular representations. 
 To learn from a representation, learners have to understand which parts of the 
domain are being represented. This could be either a complete domain with all its 
variables and relations or only a specific part of the domain. 
 To relate representations, learners must mentally search for similarities and 
differences. In a simulation about a car in motion, for example, the learner has to 
relate the slope of the line in a speed-time graph to the right property of the moving 
car. 
 To translate between representations, learners need to interpret the effects that 
changes in one representation have on corresponding representations. Learners are 
supposed to gain deeper understanding of the domain by articulating what happens 
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to a second representation when a first is manipulated and/or by reflecting upon the 
similarities and differences between the representations. 
 When learning with multiple representations, learners must be supported in the 
aforementioned tasks. In this thesis we focused on support for both relating and 
translating between representations. It reports three studies in which we examined 
different ways to support learners in relating representations and to encourage them 
to translate between representations.  
 
Does integrating and/or linking dynamic multiple representations have an effect on 
learning outcomes? 
 
The goal of the first study was to determine whether integrating and/or linking 
dynamic multiple representations has an effect on learning outcomes. Multiple 
representations, when integrated, appear to be one representation showing different 
aspects of the domain. Through physical integration, relations between the 
representations are directly shown to the learner. With dynamically linked 
representations, actions performed on one representation are automatically shown in 
all other representations. If a learner changes the value of a force in a numerical 
representation, for example, the corresponding representation of the force in an 
animation is updated automatically. 
 The same learning environment, that of the physics topic of moments, was 
presented in three experimental conditions, with separate, non-linked 
representations (S-NL condition), with separate, dynamically linked representations 
(S-DL condition) and with integrated, dynamically linked representations (I-DL 
condition). The learning environment was divided into a low complexity part and a 
high complexity part. 
 Subjects were 72 students from middle vocational training (aged 16 to 18). 
They worked with the learning environment, Moment, built in the authoring 
environment SimQuest. The learning environment was based on guided inquiry 
learning. The simulation interface contained five representations: (1) concrete 
representation (animation of an open-end spanner or hoisting crane), (2) 
diagrammatic representation (an abstract representation of the variables playing a 
role in the concrete situation), (3) numerical representation (showing the values of 
the variables involved) and (4, 5) two graphs (moment-force and moment-arm or 
moment-force and moment-height).  
 Prior knowledge and learning results were measured with a pre-test and post-
test containing three different item types. Domain items tested the subjects’ domain 
knowledge. The content of the items was analogous to the content of the learning 
environment. Transfer items tested the ability of the subjects to apply their acquired 
knowledge in new situations: new contexts and relations between variables that 
were not asked for in the learning environment but could be derived from the 
domain knowledge. Representation items tested the subjects’ ability to relate and 
translate between different representational formats. A questionnaire, assessing the 
subjects’ opinions of the learning environment and the domain, appeared five times 
as they worked with the learning environment. 
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Overall, the I-DL condition showed the best learning performance. Subjects in the I-
DL condition, compared to the S-NL condition, showed better learning results on 
post-test items measuring domain knowledge. A trend in favour of the I-DL 
condition compared with the S-NL condition was found on the post-test 
representation items. A subjective measure of experienced difficulty showed that 
subjects in the I-DL condition experienced the learning environment as easiest to 
work with. The complexity of the learning environment and domain interacted with 
the effects of the experimental conditions. Differences between conditions were 
found only on the test items that corresponded to the high complexity part of the 
learning environment.  
 
Does sequencing dynamic representations have an effect on learning outcomes? 
 
In the second study, described in chapter three, we used the findings of study one as 
our starting point and examined whether sequencing dynamic representations has an 
effect on learning outcomes. In this study, sequencing of representations was done 
on the basis of model progression from simple to complex. Based on the model 
progression used, we increased the number of representations iteratively. As a 
result, the number of relations and possible translations increased likewise. Starting 
with a few relations and possible translations and then introducing more relations 
and possible translations step-by-step might support learners in relating the 
representations and translating between them. 
 Two versions of the same simulation-based learning environment covering the 
physics topic of moments were compared: a learning environment providing the 
representations step-by-step (R-Step condition) and a learning environment 
providing all representations at once (R-Once condition).  
 Subjects were 88 students at the start of their first year of secondary vocational 
education. They were between 15 and 21 years old and took a course in either 
mechanical engineering or architecture. They worked with the Moments learning 
environment that was built in the SimQuest authoring environment. The simulation 
interface contained five representations: (1) a concrete representation (animation of 
an open-end spanner), (2) a diagrammatic representation (an abstract representation 
of the variables playing a role in the concrete situation), (3) a numerical 
representation (showing the values of the variables involved), (4) a dynamically 
changing equation and (5) a dynamically changing table (showing one row that was 
dynamically updated when variables were manipulated by the subjects). 
 Prior knowledge was measured with a pre-test containing domain items and 
transfer items. Learning results were measured with a post-test containing domain 
items, transfer items, relate items and translate items. The domain items tested 
whether the subjects were able to reproduce the content they were explicitly asked 
to explore in the learning environment. The transfer items tested the ability of the 
subjects to apply their acquired knowledge in new situations. The relate items asked 
students to relate similar variables from representations with different 
representational codes. To be able to answer translate items correctly, the subjects 
had to make a mental translation from manipulations on one representation to the 
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effects in another representation. A questionnaire, assessing the subjects’ opinions 
on the learning environment and the domain, appeared three times as they worked 
with the learning environment. 
 Overall, we found that the subjects learned from working in the learning 
environment; the post-test scores on the domain items and transfer items were 
significantly better than the pre-test scores. Despite our expectations, no differences 
were found between the two experimental conditions. The subjects learned equally 
well regardless of the way in which the representations were presented. Also, the 
extent to which the subjects experienced complexity of both the topic and the 
learning environment did not differ between the experimental conditions. 
 
Does sequencing dynamic representations combined with explicit instruction to 
relate and translate between representations have a positive effect on learning 
outcomes? 
 
While study one and two focused on surface level support, in study three we 
examined the effect of providing hints and prompts to encourage the subjects to 
translate between representations. This study is described in chapter four. 
 Two versions of the same simulation-based inquiry learning environment on the 
physics topic of moments were compared. One learning environment provided all 
representations at once and instructional support focused solely on relations between 
the domain variables (R-Once condition). The second learning environment 
provided the subjects with representations step-by-step and with instructional 
support that focused additionally on relating representations and translating between 
them (R-Step condition). The learning environments in both conditions made use of 
dynamic linking and integration.  
 Subjects were 86 students from secondary vocational education (aged 15 to 21) 
and 125 students from pre-university education (aged 13 to 15). Students in the first 
group were in their first year of a course in either mechanical engineering or 
architecture. Students in the second group were in their third year. Subjects came 
from four schools: two secondary vocational schools and two secondary schools. 
They worked with a simulation-based inquiry learning environment on the physics 
topic of moments, built in the SimQuest authoring environment. The simulation 
interface contained seven representations: (1) a concrete representation (animation 
of a tackle, an open-end spanner or car crane), (2) a diagrammatic representation, 
(3) a numerical representation, (4) a dynamically changing equation, (5) a moment-
arm graph, (6) a moment-force graph and (7) a dynamically changing table. 
 Prior knowledge was measured with a pre-test containing domain items and 
transfer items. Learning results were measured with a post-test containing domain 
items, transfer items, relate items and translate items. To control for the influence of 
differences in cognitive load, we used an electronic questionnaire to ask subjects to 
rate their cognitive load four times as they worked with the learning environment. 
 Overall, we found that subjects learned from working with the learning 
environment. Post-test scores were significantly better than pre-test scores. As 
expected, we found that sequencing representations combined with instructional 
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support focusing on relating and translating representations did lead to better 
learning outcomes. However, this was only found for the domain test items. A trend, 
in favour of the R-Step condition, was found on relate items. No differences were 
found on transfer items and translate items. Subjects in the R-Step condition 
reported higher cognitive load scores. Subjects did not, however, discriminate 
between cognitive load types. As a consequence, we were not able to identify what 
type of load caused the higher cognitive load of the R-Step condition. 
 
From study one we can conclude that dynamic linking combined with integration of 
representations is preferable in learning with multiple dynamically changing 
representations in simulation-based learning environments. This was found to give 
the best learning results. Although one could conclude on the basis of the results 
found in study two that introducing representations step-by-step is not necessary, we 
argue that a step-by-step introduction is preferred. Sequencing multiple 
representations has two advantages. First, the step-by-step introduction of 
representations gives learners the opportunity to get acquainted with one 
representation before moving on to the next. Second, as was the case in study two, it 
supports instructional designers in structuring the instructional support. Without a 
step-by-step introduction of representations the instructional support would most 
likely be structured differently, as was the case in study one. Our rationale for 
sequencing multiple representations, domain and task permitting, was confirmed in 
study three. In this study the R-Step condition showed the best learning outcomes. 
Since the R-Step condition was a combination of step-by-step introduction of 
representations and providing hints and prompts, we cannot say whether it was the 
combination of both or one of the support types that led to this result. Future 
research might investigate specific effects of different support types. 
 
 





 

 

Samenvatting 
 
In lesmateriaal wordt veel gebruik gemaakt van multipele representaties. In boeken 
bijvoorbeeld, worden afbeeldingen gebruikt om delen van teksten te illustreren of 
betekenis te geven. In moderne computer leeromgevingen is een grote 
verscheidenheid aan additionele representaties voorhanden zoals: geluid, video, 
animaties en dynamische grafieken en tabellen. Dit proefschrift bundelt drie studies 
naar het ondersteunen van leren met multipele representaties in simulatie-
leeromgevingen. 
 Simulatie-leeromgevingen bieden leerlingen de mogelijkheid om experimenten 
uit te voeren in een gecontroleerde omgeving. Ze bevatten een model van een 
(natuurlijk) systeem en simuleren het gedrag van dit gemodelleerde systeem. 
Leerlingen onderzoeken het simulatiemodel door het manipuleren van invoer 
variabelen en het observeren van het gedrag van uitvoer variabelen. De verwachting 
is dat leerlingen door begrip van de relaties tussen de variabelen diepere 
domeinkennis verwerven en daarmee in staat zijn hun kennis toe te passen in andere 
(werkelijke) situaties. De representaties in simulatie-leeromgevingen zijn vaak 
dynamisch. Dit betekent dat deze representaties veranderen door manipulaties in de 
leeromgeving. De meeste simulatie-leeromgevingen bevatten multipele 
representaties. 
 De gedachte achter het gebruik van multipele representaties is dat leerlingen 
kunnen profiteren van de unieke eigenschappen van elke representatie. Daarnaast 
kunnen leerlingen, vergeleken met leren met een enkele representatie, een completer 
beeld van het gerepresenteerde domein ontwikkelen als ze in staat zijn de informatie 
van verschillende representaties mentaal te combineren De verwachting is dat het 
combineren tot dieper begrip van onderwerp leidt. Om te leren van multiple 
representaties moeten leerlingen echter in staat zijn om: (1) de syntaxis van elke 
representatie begrijpen, (2) begrijpen welke delen van het domein worden 
gerepresenteerd, (3) de representaties aan elkaar relateren als ze (gedeeltelijk) 
overlappende informatie bevatten en (4) een vertaling tussen de representaties 
maken. 
 Om de syntaxis van elke representatie te begrijpen moeten leerlingen de 
structuur en de mogelijke acties op de representaties leren. Bovendien moeten de 
acties op een representatie overeenstemmen met de structuur. Leerlingen moeten 
dus begrijpen welke acties ze kunnen uitvoeren op bepaalde representaties.  
 Om te leren van een representatie moeten leerlingen begrijpen welke delen van 
het domein worden gerepresenteerd. Dit kan een compleet domein zijn met alle 
variabelen en relaties of een bepaald deel van het domein. 
 Voor het relateren van representaties moeten leerlingen mentaal naar 
overeenkomsten en verschillen zoeken. In een simulatie van een bewegende auto 
bijvoorbeeld, moet de leerling de helling van een lijn in een snelheid-tijd diagram 
relateren aan de juiste eigenschap van de auto. 
 Voor het vertalen tussen representaties moeten leerlingen interpreteren wat de 
effecten van een verandering in één representatie zijn op overeenkomstige 
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representaties. De verwachting is dat leerlingen dieper begrip van het domein 
krijgen door uit te drukken wat er gebeurt in een tweede representatie als de eerste 
wordt gemanipuleerd en/of door te reflecteren op de overeenkomsten en verschillen 
tussen representaties. 
 Leerlingen moeten bij het leren met multipele representaties in bovengenoemde 
taken ondersteund worden. In dit proefschrift richten we ons op de ondersteuning 
van het relateren en vertalen tussen representaties. Het proefschrift beschrijft drie 
studies waarin we verschillende manieren hebben onderzocht om leerlingen te 
ondersteunen bij het relateren van representaties en waarin we ze hebben 
aangemoedigd te vertalen tussen representaties. 
 
Heeft het integreren en/of linken van dynamische multipele representaties invloed 
op leeruitkomsten? 
 
Het doel van deze studie was vast te stellen of het integreren en/of linken van 
dynamische multipele representaties invloed heeft op leeruitkomsten. Door het 
integreren van multiple representaties zien ze er uit als één representatie die de 
verschillende eigenschappen van het domein weergeeft. Het fysiek integreren van 
representaties maakt de relaties tussen de representaties direct zichtbaar voor de 
leerling. Door het dynamisch linken van representaties worden acties uitgevoerd in 
één representatie automatisch getoond in andere representaties. Als een leerling 
bijvoorbeeld de waarde van een kracht in een numerieke representatie verandert, zal 
de overeenkomstige representatie van deze kracht in een animatie automatisch mee 
veranderen. 
 In drie experimentele condities is de momentenstelling weergegeven in een 
leeromgeving met aparte, niet gelinkte representaties (S-NL conditie), in een 
leeromgeving met aparte, dynamisch gelinkte representaties (S-DL conditie) en in 
een leeromgeving met geïntegreerde, dynamisch gelinkte representaties (I-DL 
conditie). De leeromgeving was verdeeld in een laag en hoog complex deel. 
 De proefpersonen waren 72 studenten uit het middelbaar beroepsonderwijs 
(leeftijd 16 tot en met 18 jaar). Ze werkten met de leeromgeving Momentenstelling 
gemaakt met de auteursomgeving SimQuest. De leeromgeving was gebaseerd op 
onderzoekend leren. De simulatie interface bevatte vijf representaties: (1) een 
concrete representatie (animatie van een steeksleutel of hijskraan), (2) een abstracte 
representatie, (3) een numerieke representatie en (4, 5) twee grafieken (moment-
kracht en moment-arm of moment-kracht en moment-hoogte). 
 Voorkennis en leerresultaten werden gemeten met een voor- en natoets met drie 
verschillende typen vragen. De domeinkennis van de proefpersonen werd gemeten 
met domeinvragen. De inhoud van deze vragen was analoog aan de inhoud van de 
leeromgeving. Met transfervragen werd gemeten of de proefpersonen de 
aangeleerde kennis konden toepassen in nieuwe situaties: vragen met nieuwe 
contexten en vragen over relaties tussen variabelen waarnaar niet werd gevraagd in 
de leeromgeving maar die konden worden beantwoord met de aangeleerde 
domeinkennis. Met representatievragen werd gemeten of de proefpersonen 
verschillende representaties konden relateren of tussen verschillende representaties 



Samenvatting 

119 

konden vertalen. Tijdens het werken in de leeromgeving verscheen vijf keer een 
vragenlijst waarin de proefpersonen werd gevraagd naar hun mening over de 
leeromgeving en het domein. 
 De I-DL conditie liet de beste leerresultaten zien. Proefpersonen uit de I-DL 
conditie haalden in vergelijk met de S-NL betere leerresultaten op de natoets 
domeinvragen. Er werd een trend gevonden op de representatievragen in het 
voordeel van de I-DL conditie vergeleken met de S-NL conditie. Een subjectieve 
meting naar ervaren complexiteit liet zien dat de proefpersonen in de I-DL conditie 
het werken met hun leeromgeving het gemakkelijkst vonden. We vonden een 
interactie tussen de complexiteit van het domein en de experimentele condities. De 
verschillen tussen de condities werden alleen gevonden op de toetsvragen die 
correspondeerden met het complexe deel van de leeromgeving. 
 
Heeft het sequentieel aanbieden van dynamische representaties een effect op 
leeruitkomsten? 
 
In de tweede studie, beschreven in hoofdstuk 2, hebben we de bevindingen uit 
studie één als startpunt genomen en onderzocht of het sequentieel aanbieden van 
dynamische representaties invloed heeft op leeruitkomsten. In deze studie is het 
sequentieel aanbieden van representaties gebaseerd op een modelprogressie van 
simpel naar complex. Gebaseerd op de gebruikte modelprogressie hebben we het 
aantal representaties iteratief verhoogd. Hiermee verhoogde eveneens het aantal 
relaties en mogelijke vertalingen. Beginnen met een paar relaties en mogelijke 
vertalingen en vervolgens stap voor stap introduceren van meer relaties en 
mogelijke vertalingen zou leerlingen kunnen ondersteunen in het relateren van 
representaties en het vertalen ertussen. 
 Twee versies van dezelfde simulatie-leeromgeving over het onderwerp 
momentenstelling zijn vergeleken: een leeromgeving waarin de representaties stap 
voor stap werden aangeboden (R-Step conditie) en een leeromgeving waarin alle 
representaties ineens werden aangeboden (R-Once conditie). 
 De proefpersonen waren 88 eerstejaars studenten uit het middelbaar 
beroepsonderwijs. Ze waren 15 tot en met 21 jaar oud en volgden de opleiding 
werktuigbouwkunde of bouwkunde. Ze werkten met de leeromgeving 
Momentenstelling gemaakt met de auteursomgeving SimQuest. De simulatie 
interface bevatte vijf representaties: (1) een concrete representatie (animatie van een 
steeksleutel), (2) een abstracte representatie (representatie van de variabelen die een 
rol spelen in de concrete situatie), (3) een numerieke representatie (weergave van de 
waarden van de variabelen), (4) een dynamisch veranderende vergelijking en (5) 
een dynamisch veranderende tabel (weergave van één rij variabelen waarvan de 
waarde automatisch werd bijgewerkt wanneer ze werden gemanipuleerd in andere 
representaties). 
 Voorkennis werd gemeten met een voortoets met domeinvragen en 
transfervragen. Leerresultaten werden gemeten met een natoets met domeinvragen, 
transfervragen, relateervragen en vertaalvragen. Met de domeinvragen werd 
gemeten of de proefpersonen in staat waren de leerinhoud te reproduceren die ze in 
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de leeromgeving expliciet werd gevraagd te onderzoeken. Met de transfervragen 
werd gemeten of de proefpersonen de opgedane kennis konden toepassen in nieuwe 
situaties. De relateervragen vroegen de proefpersonen dezelfde variabelen te 
relateren in twee representaties met een verschillende structuur. Om de 
vertaalvragen goed te beantwoorden moesten de proefpersonen een mentale 
vertaling maken van manipulaties in één representatie op de effecten in een andere 
representatie. Tijdens het werken in de leeromgeving verscheen drie keer een 
vragenlijst waarin de proefpersonen werd gevraagd naar hun mening over de 
leeromgeving en het domein. 
 We vonden dat de proefpersonen leerden van het werken met de leeromgeving. 
De natoets scores op de domeinvragen en transfervragen waren significant beter dan 
de voortoets scores. In tegenstelling tot onze verwachtingen vonden we geen 
verschillen tussen de experimentele condities. Onafhankelijk van de wijze waarop 
de representaties werden aangeboden behaalden de proefpersonen dezelfde 
resultaten. Ook de mate waarin de proefpersonen de complexiteit van de 
leeromgeving en het domein ervoeren verschilde niet tussen de experimentele 
condities. 
 
Heeft het sequentieel aanbieden van dynamische representaties, gecombineerd met 
expliciete instructie om te relateren en vertalen tussen representaties een effect op 
leeruitkomsten? 
 
Terwijl de ondersteuning in studie één en twee gericht was op het zichtbaar maken 
van relaties tussen representaties, hebben we ons in studie drie gericht op het 
ondersteunen van begrip. Door het aanbieden van hints en prompts hebben we de 
proefpersonen aangemoedigd de representaties betekenisvol te relateren en een 
vertaling tussen de representaties te maken. Dit is beschreven in hoofdstuk vier. 
 We hebben twee versies van dezelfde simulatie-leeromgeving over het 
onderwerp momentenstelling vergeleken. In de eerste leeromgeving werden alle 
representaties in een keer aangeboden waarbij de instructionele ondersteuning was 
gericht op de relaties tussen de variabelen in het domein (R-Once conditie). In de 
tweede leeromgeving werden de representaties stap voor stap aangeboden waarbij 
de instructionele ondersteuning zich aanvullend richtte op het relateren en vertalen 
tussen de representaties. Beide leeromgevingen maakten gebruik van dynamisch 
linken en integratie van representaties. 
 Proefpersonen waren 68 studenten uit het middelbaar beroepsonderwijs (leeftijd 
15 tot en met 21 jaar) en 125 vwo-leerlingen (leeftijd 13 tot en met 15 jaar). De 
studenten uit de eerste groep waren eerstejaars werktuigbouwkunde of eerstejaars 
bouwkunde studenten. De studenten uit de tweede groep zaten in hun derde jaar. De 
proefpersonen kwamen van vier verschillende scholen; twee ROC’s en twee scholen 
voor voortgezet onderwijs. Ze werkten met de leeromgeving Momentenstelling 
gemaakt met de auteursomgeving SimQuest. De simulatie interface bevatte zeven 
representaties: (1) een concrete representatie (animatie van een hijsbalk, een 
steeksleutel of een autokraan), (2) een abstracte representatie, (3) een numerieke 
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representatie, (4) een dynamisch veranderende vergelijking, (5) een moment-arm 
grafiek, (6) een moment-kracht grafiek en (7) een dynamisch veranderende tabel. 
 Voorkennis werd gemeten met een voortoets met domeinvragen en 
transfervragen. Leerresultaten werden gemeten met een natoets met domeinvragen, 
transfervragen, relateervragen en vertaalvragen. Een eventueel verschil in cognitieve 
belasting werd gemeten met een vragenlijst die vier keer verscheen tijdens het 
werken met de leeromgeving. 
 We vonden dat de proefpersonen leerden van het werken met de leeromgeving. 
De natoets scores op de domeinvragen en transfervragen waren significant beter dan 
de voortoets scores. Zoals verwacht vonden we dat het sequentieel aanbieden van 
representaties gecombineerd met instructie gericht op het relateren en vertalen 
tussen representaties leidde tot betere leeruitkomsten. Dit gold echter alleen voor de 
domeinvragen. We vonden een trend op de relatievragen in het voordeel van de R-
Step conditie. We vonden geen verschillen op de transfervragen en vertaalvragen. 
De proefpersonen in de R-Step conditie rapporteerden een hogere cognitieve 
belasting. De proefpersonen maakten echter geen onderscheid in typen cognitieve 
belasting waardoor we konden vaststellen welk type cognitieve belasting tot de 
hogere cognitieve belasting in de R-Step conditie heeft geleid. 
 
Uit de drie studies kunnen we een aantal conclusies trekken. Op basis van studie één 
kan geconcludeerd worden dat dynamisch linken gecombineerd met integratie van 
representaties is aan te bevelen in het leren met multipele dynamisch veranderende 
representaties in simulatie-leeromgevingen. In studie één leidde dit tot de beste 
leerresultaten. Hoewel op basis van studie twee geconcludeerd zou kunnen worden 
dat het stap voor stap aanbieden van representaties niet zinvol is, zijn er twee 
redenen dit wel te doen. Ten eerste geeft het stap voor stap aanbieden van 
representaties leerlingen de gelegenheid vertrouwd te raken met een representatie 
voor ze een volgende representatie krijgen aangeboden. Ten tweede ondersteunt het 
ontwerpers in het structuren van de instructionele ondersteuning. De instructionele 
ondersteuning had er in studie twee heel anders uitgezien als het was gebaseerd op 
het ineens aanbieden van de representaties. De instructie zou dan veel meer op die 
van studie één hebben geleken. Ons pleidooi voor het sequentieel aanbieden van 
representaties wordt ondersteund door de resultaten van studie drie. In deze studie 
leidde een combinatie van het sequentieel aanbieden van representaties en het geven 
van hints en prompts tot de beste leeruitkomsten. Of het deze combinatie was of één 
van de typen ondersteuning dat leidde tot dit resultaat uitkomst is onderwerp voor 
toekomstig onderzoek. 
 
 
 





 

 

 


